KUMARAGURU COLLEGE OF TECHNOLOGY
 An autonomous Institution affiliated to Anna University, Chennai

 COIMBATORE - 641049.

 COIMBATORE - 641049.}

B.E., ELECTRONICS AND COMMUNICATION ENGINEERING

REGULATIONS 2018A
(2021 batch onwards)

CURRICULUM AND SYLLABI
I to VIII Semesters

Department of Electronics and Communication Engineering

VISION

To be a centre of repute for learning and research with internationally accredited curriculum, state-of-the-art infrastructure and laboratories to enable the students to succeed in globally competitive environments in academics and industry.

MISSION

The Department is committed to:

- Motivate students to develop professional ethics, self-confidence and leadership quality.
- Facilitate the students to acquire knowledge and skills innovatively to meet evolving global challenges and societal needs.
- Achieve excellence in academics, core engineering and research.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The Programme Educational Objectives of Electronics and Communication Engineering Undergraduate Programme are:

PEO1: Graduates will be successful as Professionals, Researchers or Entrepreneurs in Electronics, Information and Communication Engineering disciplines.
PEO2: Graduates will continuously be updated with the state-of the art technology through formal and informal education to provide sustainable solutions.
PEO3: Graduates will demonstrate ethical and social responsibilities as an individual and in a team of diverse culture.

PROGRAMME OUTCOMES (POs)

PO1: The graduates would be able to apply the knowledge of mathematics, sciences, engineering fundamentals and skills to solve problems in electronics and communication
PO2: The graduates would acquire skills to analyse complex problems in the domain of electronics and communication engineering.
PO3: The graduates would be able to design, develop and validate solutions for electronics and communication systems meeting the specifications vis-à-vis the society.
PO4: The graduates will have proficiency to acquire, analyse data and interpret results leading to relevant research.
PO5: The graduates would be able to use appropriate modern engineering/simulation tools including modelling and forecasting for complex technological entities.
PO6: The graduates would have awareness of and the need to uphold professional responsibilities and also be aware of health, safety, social and legal aspects of their work.
PO7: The graduates would have an understanding of the societal and human context in which their engineering contributions will provide sustainable development.
PO8: The graduates would carry out professional responsibilities adhering to ethical and standard norms of engineering practices.

M.Bhirathi

Signature of BOS Chairperson, ECE

PO9: The graduates would have ability to function effectively as an individual and as a member or leader in diverse teams and in multi-disciplinary environment.
PO10: The graduates would be capable of communicating effectively with the engineering community and society at large.
PO11: The graduates would demonstrate knowledge and understanding of engineering and management principles for technological and socially relevant projects.
PO12: The graduates would recognize the need for and also have ability to engage in continual, life-long learning.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

Graduates of the Electronics and Communication Engineering Programme will have the ability to: PSO1: Analyze and Design, verify and validate VLSI Systems by selecting appropriate hardware and software tools.
PSO2: Design, develop and validate inter disciplinary products/ process by applying the knowledge and skills of Embedded Systems, Signal Processing, Electromagnetics and Communication Engineering.

KUMARAGURU COLLEGE OF TECHNOLOGY
 COIMBATORE - 641049
 REGULATIONS 2018A
 B.E. ELECTRONICS AND COMMUNICATION ENGINEERING CURRICULUM

M.Bhrathi

Signature of BOS Chairperson, ECE

Semester III										Pre-requisite
S.No	Course code	Course Title	Course Mode	CT	L	T	P	J	C	
1	U18ECT3101	Signals and Systems	Theory	BS	3	1	0	0	4	-
2	U18ECI3202	Electron Devices and Circuits	Embedded - Theory \& Lab	PC	3	0	2	0	4	-
3	U18ECI3203	Digital System Design	Embedded - Theory \& Lab	PC	3	0	2	0	4	-
4	U18ECT3004	Electro Magnetic Fields	Theory	PC	3	0	0	0	3	-
5	U18ECT3105	Network theory	Theory	PC	3	1	0	0	4	-
6	U18INI3600	Engineering Clinic III	Practical \& Project	ES	0	0	4	2	3	U18INI2600
Total Credits									22	
Total Contact Hours/week									27	

Semester IV										Pre-requisite
S.No	Course code	Course Title	Course Mode	CT	L	T	P	J	C	
1	U18ECI4201	Digital Signal Processing	Embedded - Theory \& Lab	PC	3	0	2	0	4	U18ECT3101
2	U18ECI4202	Analog Electronics and Integrated Circuits	Embedded - Theory \& Lab	PC	3	0	2	0	4	U18ECI3202
3	U18MAT4103	Probability and Random Processes	Theory	BS	3	1	0	0	4	-
4	U18ECT4104	Transmission Lines and Waveguides	Theory	PC	3	1	0	0	4	U18ECT3004
5	U18INI4600	Engineering Clinic IV	Practical \&Project	ES	0	0	4	2	3	U18INI3600
6	U18......	Open Elective I	Theory	OE	3	0	0	0	3	-
Total Credits									22	
Total Contact Hours/week									28	

Semester V										Pre-requisite
S.No	Course code	Course Title	Course Mode	CT	L	T	P	J	C	
1	U18ECI5201	Communication Engineering- I	Embedded - Theory \& Lab	PC	3	0	2	0	4	U18ECT3101
2	U18ECI5203	Communication Networks	Embedded - Theory \& Lab	PC	3	0	2	0	4	-
3	U18ECT5004	Control Systems	Theory	PC	3	0	0	0	3	-
4	U18ECT5005	Antennas and wave propagation	Theory	PC	3	0	0	0	3	U18ECT4104
5	U18ECI5206	Embedded Processor Architecture	Embedded - Theory \& Lab	PC	3	0	2	0	4	U18ECI3203
6	U18ECE...	Professional Elective I	Theory	PE	3	0	0	0	3	-
Total Credits									21	
Total Contact Hours/week									27	

Semester VI										Pre-requisite
S.No	Course code	Course Title	Course Mode	CT	L	T	P	J	C	
1	U18ECI6201	Communication Engineering- II	Embedded - Theory \& Lab	PC	3	0	2	0	4	U18ECI5201
2	U18ECI6203	VLSI and HDL Programming	Embedded - Theory \& Lab	PC	3	0	2	0	4	U18ECI3203
3	U18ECI6204	Microcontroller and its Applications	Embedded - Theory \& Lab	PC	2	0	2	0	3	U18ECI5206
4	U18......	Open Elective II	Theory	OE	3	0	0	0	3	-
5	U18ECE...	Professional Elective II	Theory	PE	3	0	0	0	3	-
6	U18ECE...	Professional Elective III	Theory	PE	3	0	0	0	3	-
Total Credits									20	
Total Contact Hours/week									23	

M.Blurathi

Signature of BOS Chairperson, ECE

List of Mandatory Non-Credit Courses						
S. No	Course Code	Course Title	Course Mode	CT	Semester	
1	U18CHT3000	Environmental Science and Engineering	Theory	MC	3	
2	U18INT4000	Constitution of India	Theory	MC	4	

List of Mandatory Courses with credit						
S. No	Course Code	Course Title	Course Mode	Credit	Semester	
1	U18VET4101	Universal Human Values 2: Understanding Harmony	Theory	3	4	

Open Elective Courses

S. No	Course Code	Course Title	Credit
1	U18EC00001	Virtual Instrumentation	3
2.	U18EC00002	Autotronics - An Introduction to Smart Vehicles	3
3.	U18ECO0003	Advanced Mobile Technology: NFV, LTE \& 5G	3
4.	U18ECO0004	CCNA-CICCO Certified Network Associate	3
5.	U18ECO0005	Introduction to Neural Networks and Deep Learning	3
6.	U18ECO0006	Cyber Security	3

M.Blurathi

Signature of BOS Chairperson, ECE

M.Bhurathi

Signature of BOS Chairperson, ECE

One Credit Course									
S.No	Course code	Course Title	Course Mode	CT	L	T	P	J	C
1.	U18ECC0001	Advance System Design using 16 bit Ultra Low Power Microcontrollers	Theory	OCC	1	0	0	0	1
2.	U18ECC0002	Advanced Motor Control Application using 32 Bit Real Time Controllers	Theory	OCC	1	0	0	0	1
3.	U18ECC0003	Energy Efficient Microcontrollers and its Applications	Theory	OCC	1	0	0	0	1
4.	U18ECC0004	Internet of Things (IoT) using CC3200	Theory	OCC	1	0	0	0	1
5.	U18ECC0005	Automotive Communication Systems	Theory	OCC	1	0	0	0	1
6.	U18ECC0006	Urban Mining and Electronic Resource from E-Waste	Theory	OCC	1	0	0	0	1
7.	U18ECC0506	Hands-On Course in Digital System Design using HDL	Practical	OCC	0	0	2	0	1

M.Blurathi

Signature of BOS Chairperson, ECE

SEMESTER I

U18ENI1201 - FUNDAMENTALS OF COMMUNICATION-I

(Common to all Branches of I Semester B.E/B/Tech Programmes)

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
$\mathbf{2}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{3}$

Course Objectives:

1. To communicate effectively by using appropriate grammar and technical parlance in a range of academic scenarios.
2. To interpret and critically evaluate discourses related to functional English.
3. To disseminate professional information through appropriate means of communication.

Course Outcomes:

After the course the student will be able to:
CO1: Communicate in English with correct grammar
CO2: Communicate effectively (Oral and Written)
CO3: Use communication skills in the real world

Assessment Methods:

Direct	
1.	Continuous Assessment of Skills
2. Assignment	
3.	Written Test
4.	End Semester Examination
Indirect	
1.	Course-end survey

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1										S		S		
CO2		M		W		W			M	S		S		M
CO3		M		M		W			M	S		S		M

M.Blurathi

Signature of BOS Chairperson, ECE

No	Topic	Hours
MODULE I-12 Hrs		
1.1	Parts of Speech	2
1.2	Subject Verb Agreement	2
1.3	Speak up (Self Introduction, JAM)	4
1.4	Writing sentences using 'Be-forms'	3
1.5	Test	1
MODULE II - 12Hrs		
2.1	Articles, Gerunds, Infinitives	2
2.2	Speak up (Greetings \& Polite English)	4
2.3	Dialogue Writing	3
2.4	Skimming \& Scanning	2
2.5	Listening Skills - I	1
MODULE III-12 Hrs		
3.1	Tenses \& Voice	2
3.2	Sentences \& its kinds	2
3.3	Speak up (Narration \& Description)	4
3.4	Summarizing \& Note-making	3
3.5	Listening Skills - II	1
MODULE IV-12 Hrs		
4.1	Framing Questions - 4 types	2
4.2	Speak up (Role play)	4
4.3	Letter writing - Formal and Informal \& Email Writing	3
4.4	Reading Comprehension \& Cloze test	2
4.5	Listening Skills - III	1
MODULE V-12 Hrs		
5.1	Degrees of Comparison	2
5.2	Clauses	2
5.3	Speak up (Power Point Presentation)	4
5.4	Writing (Picture perception)	3
5.5	Test	1
	Total	60

Reference:

1. A Modern Approach to Non Verbal Reasoning (English, Paperback, Dr. R S Aggarwal)
2. The Power of Words (Bloomsbury, UK, 2012, Hyacinth Pink)
3. Word Power Made Easy: The Complete Handbook for Building a Superior Vocabulary (By Norman Lewis)
4. Effective Technical Communication Tata Mc Graw Hills Publications (Ashraf Rizvi)
5. English and Soft skills Orient Black Swan Publishers (S. P. Dhanavel)
6. Know Your Grammar: Trans.in Tamil \& Malayalam -A Bilingual Approach (Bloomsbury, UK, 2012, Hyacinth Pink)

M.Bhirathi

Signature of BOS Chairperson, ECE

U18MAI1201 LINEAR ALGEBRA AND CALCULUS

(Common to All branches)

\mathbf{L}	\mathbf{T}	\mathbf{P}	$\mathbf{P J}$	\mathbf{C}
$\mathbf{3}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{4}$

COURSE OUTCOMES

After successful completion of this course, the students should be able to:
CO1: Identify eigenvalues and eigenvectors and apply Cayley Hamilton theorem.
CO2: Apply orthogonal diagonalisation to convert quadratic form to canonical form.
CO3: Solve first order ordinary differential equations and apply them to certain physical situations.
CO4: Solve higher order ordinary differential equations.
CO5: Evaluate the total derivative of a function, expand the given function as series and locate the maximum and minimum for multivariate function.
CO6: Determine Rank, Inverse, Eigenvalues, Eigenvectors of the given matrix, MaximaMinima of the function and Solving Differential equations using MATLAB

Pre-requisite: Basics of Matrices, Differentiation and Integration

Course Assessment methods:

DIRECT

1. Continuous Assessment Test I, II (Theory component)
2. Open Book Test; Cooperative Learning Report, Assignment; Journal Paper Review, Group Presentation, Project Report, Poster Preparation, Prototype or Product
3. Demonstration etc (as applicable) (Theory component)
4. Pre/Post - Experiment Test/Viva; Experimental Report for each Experiment (lab Component)
5. Model Examination (lab component)
6. End Semester Examination (Theory and lab components)

INDIRECT

1. Course-end survey

THEORY COMPONENT

MATRICES

6 Hours

Rank of a matrix - Consistency of a system of linear equations - Rouche's theorem - Solution of a system of linear equations - Linearly dependent and independent vectors- Eigenvalues and Eigenvectors of a real matrix - Properties of eigenvalues and eigenvectors - Cayley Hamilton theorem (excluding proof)

DIAGONALISATION OF A REAL SYMMETRIC MATRIX

6 Hours

Orthogonal matrices - Orthogonal transformation of a symmetric matrix to diagonal form Reduction of quadratic form to canonical form by orthogonal transformation.

FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS 11 Hours

Leibnitz's equation - Bernoulli's equation - Equations of first order and higher degree - Clairauts form - Applications: Orthogonal trajectories.

HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS
 11 Hours

Linear equations of second and higher order with constant coefficients - Euler's and Legendre's linear equations - Method of variation of parameters - First order Simultaneous linear equations with constant coefficients - Applications.

FUNCTIONS OF SEVERAL VARIABLES

11 Hours

Total derivative - Taylor's series expansion - Maxima and minima of functions of two variables

- Constrained maxima and minima: Lagrange's multiplier method with single constraints Jacobians.

REFERENCES

1. Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 41st Edition, 2011.
2. Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill Co. Ltd., New Delhi, 11th Reprint, 2010.
3. Kreyzig E., "Advanced Engineering Mathematics", Tenth Edition, John Wiley and sons, 2011.
4. Veerarajan T., Engineering Mathematics (for First Year), Tata McGraw Hill Pub. Co. Ltd., New Delhi, Revised Edition, 2007
5. Kandasamy P., Thilagavathy K., and Gunavathy K., "Engineering Mathematics", S. Chant \& Co., New Delhi, (Reprint) 2008
6. Venkataraman M.K., "Engineering Mathematics", The National Pub. Co., Chennai,2003
7. Weir, MD, Hes J, Giordano FR: Thomas' Calculus, Pearson education $12^{\text {th }}$ Edition, 2015
8. P.Bali., Dr. Manish Goyal., Transforms and partial Differential equations, University Science Press, New Delhi, 2010
9. G.B.Thomas and R.L.Finney, Calculus and analytical geometry, $11^{\text {th }}$ Edition, PearsonEducation, (2006)

M.Blurathi

Signature of BOS Chairperson, ECE

LAB COMPONENT

1. Introduction to MATLAB.
2. Matrix Operations - Addition, Multiplication, Transpose, Inverse
3. Rank of a matrix and solution of a system of linear equations
4. Characteristic equation of a Matrix and Cayley-Hamilton Theorem.
5. Eigenvalues and Eigenvectors of Higher Order Matrices
6. Curve tracing
7. Solving first order ordinary differential equations.
8. Solving second order ordinary differential equations.
9. Determining Maxima and Minima of a function of one variable.
10. Determining Maxima and Minima of a function of two variables.

Theory: 45 Tutorial: $0 \quad$ Practical: $30 \quad$ Project: $0 \quad$ Total: 75 Hours

U18CHI1201

ENGINEERING CHEMISTRY

 (Common to All Branches)| \mathbf{L} | \mathbf{T} | \mathbf{P} | \mathbf{J} | \mathbf{C} |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{3}$ | $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{0}$ | $\mathbf{4}$ |

Course Outcomes

After successful completion of this course, the students should be able to
CO1: Apply the basic principles of chemistry at the atomic and molecular level.
CO2: Analyze the impact of engineering solutions from the point of view of chemical principles
CO3: Apply the chemical properties to categorize the engineering materials and their uses
CO4: Integrate the chemical principles in the projects undertaken in field of engineering and technology
CO5: Develop analytical proficiency through lab skill sets to demonstrate in professional practice.
Pre-requisites :-

Course Assessment methods

Direct

1. Continuous Assessment Test I, II
2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group
3. Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc (as applicable)
4. End Semester Examination

Indirect

1. Course-end survey

Theory Component

CHEMICAL BONDING

7 Hours
Bonding: Introduction - Ionic bonding - Van der Waal's forces (dipole - dipole, dipole - induced dipole, induced dipole - induced dipole interactions) - hydrophobic interaction.
Bonding in organic molecules: covalent and co-ordinate bonds (overview only) - hybridization (sp, sp, sp 3) - hydrogen bonding and its consequences.

THERMODYNAMICS

7 Hours
Introduction - Thermodynamic process - Internal energy - Enthalpy - limitations of First law of thermodynamics - Second law of thermodynamics - Entropy - Third law of thermodynamics - Free Energy and Work Function - Clausius-Clapeyron equation - Maxwell's relations - Kirchhoff's equation.

ELECTROCHEMISTRY AND CORROSION

Electrodes - Electrode Potential - Nernst equation and problems - Galvanic cell - Electrochemical Series.
Corrosion: Classification and mechanism of chemical and electrochemical corrosion - Factors influencing corrosion
Corrosion control: Inhibitors - Cathodic protection (Sacrificial anodic protection, Impressed current cathodic protection) - Protective coating: Electroplating (Au) and Electroless plating (Ni).

WATER TECHNOLOGY

6 Hours
Introduction - soft/hard water - Disadvantages of hard water in industries- scale, sludge, priming and foaming, caustic embrittlement.
Treatment of hard water: External treatment (Ion exchange method) - Internal treatment (colloidal, carbonate, phosphate and calgon conditioning) - Desalination (Reverse osmosis, Electrodialysis)

ENGINEERING MATERIALS

9 Hours
Polymer: Introduction - Preparation, Properties and Applications of PMMA, PET, PVC.
Composites: Constituents of Composites - Polymer Composites - Metal Matrix Composites Ceramic Matrix Composites - Applications
Lubricants: Classification - Functions - Properties (viscosity index, flash and fire point, oiliness, carbon residue, aniline point, cloud point and pour point) - Semi solid lubricant (greases with calcium based, sodium based, lithium based) - Solid lubricants (graphite, molybdenum disulphide)

SURFACE CHEMISTRY AND CATALYSIS

Adsorption: Types of adsorption - Adsorption isotherms: Freundlich's adsorption isotherm Langmuir's adsorption isotherm - Applications of adsorption on pollution abatement. Catalysis: Catalyst - catalytic poisoning and catalytic promoters - autocatalysis -- acid base catalysis - enzyme catalysis - Michaelis-Menten equation - applications.
Chemical kinetics: Introduction - first order, pseudo first order, second order, zero order equations - parallel reactions - opposing reactions.

M.Blurathi

Signature of BOS Chairperson, ECE

REFERENCES

1. Jain P.C. and Jain. M., Engineering Chemistry, 16th Edition, Dhanpat Rai Publishing Company, New Delhi, Reprint 2017.
2. Puri B.R., Sharma L.R., Pathania, M.S. Principles of physical chemistry, Vishal Publishing Co., 2017
3. Atkins, P. and de Paula, J., Atkin's Physical Chemistry, 9th ed., Oxford Univ. Press, 2009.
4. Glasstone S., An introduction to Electrochemistry, 10th Edition, Affiliated to East West Press Private Limited, 2007.
5. Samir Sarkar., Fuels and Combustion, 3rd Edition, Orient Longman, India, 2009.
6. Dara S.S. and Umare S.S., A text book of Engineering Chemistry, S.Chand and Company Limited, New Delhi, 2014.
7. Engineering Chemistry, Wiley India Editorial Team, Wiley, 2018.

LABORATORY COMPONENT

LIST OF EXPERIMENTS

1. Preparation of Standard solutions
2. Conductometric estimation of mixture of acids vs strong base
3. Estimation of extent of corrosion of Iron pieces by Potentiometry
4. Estimation of the extent of dissolution of Copper / Ferrous ions by spectrophotometry.
5. Estimation of acids by pH metry.
6. Determination of total, temporary and permanent hardness by EDTA method.
7. Estimation of DO by Winkler's method
8. Estimation of Alkalinity by Indicator method.
9. Estimation of Chloride by Argentometric method
10. Estimation of Sodium and Potassium in water by Flame photometry.
11. Determination of Flash and Fire point of lubricating oil
12. Determination of Cloud and Pour point of lubricating oil
13. Determination of relative and kinematic viscosities of lubricating oil at different temperatures
14. Determination of corrosion rate on mild steel by Weight loss method
15. Morphological studies of corrosion on mild steel by microscopic techniques

Theory: 45 Tutorial: $0 \quad$ Practical: 30 Project: $0 \quad$ Total: 75 Hours

REFERENCES

1. Jeffery G.H., Bassett J., Mendham J. and Denny R.C., Vogel's Text Book of Quantitative Chemical Analysis, Oxford, ELBS, London,2012.
2. Shoemaker D.P. and C.W. Garland., Experiments in Physical Chemistry, Tata McGraw-Hill Pub. Co., Ltd., London,2003.

U18EEI1202

Course Outcomes

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	2	0	4

Upon completion of the course, the student should be able to:
CO1: Describe the working principle and applications of DC machines (K2).
CO2: Analyze the working principle and characteristics of the transformers (K4).
CO3: Explain the working principle and applications of AC machines (K2).
CO4: Choose suitable special electrical motors for desired application (K3).
CO5: Select an appropriate electric drive for a given application by considering various parameters (K3).

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II Assignment End Semester Examination
INDIRECT
Course-end survey
DC MACHINES
Construction, working principle and operation of DC generators - Types - EMF equation -
working principle and operation of DC motor - Types-Torque equation -Applications.

TRANSFORMER

9Hours
Construction, working principle and operation of Single phase power transformer -Types - EMF equation of a transformer - Transformation ratio -Transformer losses and efficiency- Applications.

INDUCTION MACHINES

9 Hours
Construction, working principle and operation of Three-phase induction motors - speed- torque characteristic- Construction, working principle and operation of Single- phase induction motors - types - applications

SPECIAL MACHINES

9 Hours

Stepper motor- Types of stepper motor- Permanent Magnet DC motor- Brushless DC motor Servo motor- Selection of motors for automotive and robotics applications.

ELECTRIC DRIVES

Basic Elements-Types of Electric Drives - factors influencing the choice of electrical drivesLoading conditions and classes of duty - short time, continuous and intermittent duty.

Laboratory Experiments

1. Open circuit and load characteristics of DC shunt generator
2. Load characteristics of DC shunt motor
3. Load characteristics of DC series motor
4. Load test on single-phase transformer
5. Load Test on Three Phase Induction Motor
6. Load Test on Single Phase Induction Motor
7. Open circuit and short circuit test on single phase transformer
8. Control of Stepper Motor
9. Control of Servo motors
10. Control of BLDC motor

REFERENCES

1. IJ. Nagarathand Kothari DP, "Electrical Machines, McGraw-Hill Education", 4th Edition, 2010.
2. Gopal K. Dubey, "Fundamentals of Electric Drives", 2 nd Edition, Narosa Publishing House, New Delhi, 2015.
3. Thereja .B.L, -Fundamentals of Electrical Engineering and Electronics, S Chand \& Co Ltd, 2008.
4. J.B.Gupta, -Theory and Performance of Electrical Machines, $14^{\text {th }}$ Edition, S.K.Kataria and Sons, 2010, New Delhi.
5. S.K. Pillai, "A First Course on Electrical Drives", $3{ }^{\text {rd }}$ Edition, New Age International Publishers, New Delhi, 2014.

U18CSI1202 PROBLEM SOLVING AND PROGRAMMING USING C

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
$\mathbf{2}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{3}$

COURSE OUTCOMES

AFTER SUCCESSFUL COMPLETION OF THIS COURSE, THE STUDENTS SHOULD BE ABLE TO

CO1: Acquire knowledge on different problem-solving techniques.
CO2: Use appropriate data types and control structures for solving a given problem.
CO3: Execute different array and string operations.
CO4: Experiment with the usage of pointers and functions.
CO5: Organize data using structures and unions.

Pre-requisites :-

COURSE ASSESSMENT METHODS

DIRECT	
1.	Continuous Assessment Test I, II (Theory Component)
2.	Assignment (Theory Component)
3.	Group Presentation (Theory Component)
4.	Pre/Post - experiment Test/Viva; Experimental Report for each experiment (lab
\quad component)	
5.	Model examination (lab component)
6.	End Semester Examination (Theory and lab component)
INDIRECT	
1.	Course-end survey

M.Bhrathi

Signature of BOS Chairperson, ECE

THEORY COMPONENT CONTENTS

STRUCTURED PROGRAMMING
 6 Hours

Algorithms, building blocks of algorithms (instructions/statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration). Introduction to C Programming - Operators and Expressions - Data Input and Output - Control Statements.

ARRAYS AND STRINGS
 6 Hours

Defining an array - Processing an array -Multidimensional Arrays Character Arithmetic - Defining a string - Initialization of Strings - Reading and Writing Strings - Processing Strings - Searching and Sorting of Strings

FUNCTIONS, STORAGE CLASSES

6 Hours

Defining a function - Accessing a function - Function prototypes - Passing arguments to a function - Passing arrays to functions - Function with string - Recursion - Storage classes

POINTERS

7 Hours

Pointer Fundamentals - Pointer Declaration - Passing Pointers to a Function - Pointers and one dimensional arrays - operations on pointers- Dynamic memory allocation.

STRUCTURES AND UNIONS

5 Hours

Structures and Unions: Defining a Structure - Processing a Structure - User defined data types (Typedef) - Unions

REFERENCES

1. Byron S Gottfried and Jitendar Kumar Chhabra, "Programming with C", Tata McGraw Hill Publishing Company, Third Edition, New Delhi, 2011.
2. Pradip Dey and Manas Ghosh, "Programming in C", Second Edition, Oxford University Press, 2011.
3. Kernighan,B.W and Ritchie,D.M, "The C Programming language", Second Edition, Pearson Education, 2006
4. Ashok N. Kamthane, "Computer programming", Pearson Education, 2007.
5. Reema Thareja, "Programming in C", Second Edition, Oxford University Press, 2011.

LAB COMPONENT CONTENTS

LIST OF EXPERIMENTS

30 Hours

1. Writing algorithms, flowcharts and pseudo codes for simple problems.
2. Programs on expressions and conversions
3. Programs using if, if-else, switch and nested if statements
4. Programs using while, do-while, for loops
5. Programs on one dimensional arrays, passing arrays to functions and array operations
6. Programs using two dimensional arrays, passing 2D arrays to functions
7. Programs using String functions
8. Programs using function calls, recursion, call by value
9. Programs on pointer operators, call by reference, pointers with arrays
10. Programs using structures and unions.

Theory: $\mathbf{3 0}$	Tutorial: 0	Practical: $\mathbf{3 0}$	Project: 0	Total: 60 Hours

REFERENCES

1. Byron S Gottfried and Jitendar Kumar Chhabra, "Programming with C", Tata McGraw Hill Publishing Company, Third Edition, New Delhi, 2011.
2. Pradip Dey and Manas Ghosh, "Programming in C", Second Edition, Oxford University Press, 2011.
3. Kernighan,B.W and Ritchie,D.M, "The C Programming language", Second Edition, Pearson Education, 2006
4. Ashok N. Kamthane, "Computer programming", Pearson Education, 2007.

U18INI1600

ENGINEERING CLINIC - I

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
0	0	4	2	3

Course objectives

- To help the students look into the functioning of simple to complex devices and systems
- To enable the students to design and build simple systems on their own
- To help experiment with innovative ideas in design and team work
- To create an engaging and challenging environment in the engineering lab

Course Outcomes

After successful completion of this course, the students should be able to:
CO1: Identify a practical problems and find a solution
CO2: Understand the project management techniques
CO3: Demonstrate their technical report writing and presentation skills

Pre-requisite: -

CO/PO MAPPING														
(S/M/W indicates strength of correlation)									S-Strong, M-Medium, W-Weak					
COs	PROGRAMME OUTCOMES (POs)													
	PO1	PO2	P03	PO4	P05	P06	P07	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S	S	S	S	M	W		S			S		
CO2											S			
CO3										S				

Course Assessment methods:

Direct	Indirect
1. Project reviews 50\%	1. Course Exit Survey
2. Workbook report 10\%	
3. Demonstration \& Viva-voce 40\%	

Content:

The course will offer the students with an opportunity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide the students with ample opportunity to be innovative in designing and building a range of products from toys to robots and flying machines.

In the I semester, students will focus primarily on IOT with C programming using Arduino

GUIDELINES:

1. Practical based learning carrying credits.
2. Multi-disciplinary/ Multi-focus group of 5-6 students.
3. Groups can select to work on a specific tasks, or projects related to real world problems.
4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group as well as individual students.
5. The students have to display their model in the 'Engineering Clinics Expo' at the end of semester.
6. The progress of the course is evaluated based on reviews and final demonstration of prototype.

Theory: 0	Tutorial: $\mathbf{0}$	Practical: 60	Project:30	Total: 90 Hours

SEMESTER II

U18ENI2201 - FUNDAMENTALS OF COMMUNICATION - II

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
$\mathbf{2}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{3}$

(Common to all branches of II Semester B.E/B/Tech Programmes)

Course Objectives:

1. To effectively use the basic language skills to imbibe technical language skills.
2. To hone written and spoken competencies leading to effective communication.
3. To comprehend, use and explain technical data and information.

Course Outcomes:

After the course the student will be able to:
CO1: Read, understand, and interpret material on technology.
CO2: Communicate knowledge and information through oral and written medium.
CO3: Compare, collate and present technical information according to the audience and purpose.

Assessment Methods

Direct

1. Continuous Assessment of Skills
2. Assignment
3. Written Test
4. End Semester Examination

Indirect

1. Course-end survey

CO/PO Mapping:

M.Blurathi

Signature of BOS Chairperson, ECE

Reference Books:

1. Technical English Workbook, VRB Publishers Pvt. Ltd (Prof. Jewelcy Jawahar, Dr.P.Ratna)
2. Effective Technical Communication, Tata McGraw Hills Publications (Ashraf Rizvi)
3. Technical Communication - English Skills for Engineers, Oxford Higher Education (Meenakshi Raman, Sangeeta Sharma)

U18MAI2201

ADVANCED CALCULUS AND LAPLACE
 TRANSFORMS

(Common to All branches)

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
$\mathbf{3}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{4}$

COURSE OUTCOMES

After successful completion of this course, the students should be able to

CO1: Evaluate double and triple integrals in Cartesian coordinates and apply them to calculate area and volume.
CO2: Apply various integral theorems for solving engineering problems involving cubes and rectangular parallelepipeds.
CO3: Construct analytic functions of complex variables and transform functions from z-plane to w-plane and vice-versa, using conformal mappings.
CO4: Apply the techniques of complex integration to evaluate real and complex integrals over suitable closed paths or contours.
CO5: Solve linear differential equations using Laplace transform technique.
CO6: Determine multiple integrals, vector differentials, vector integrals and Laplace transforms using MATLAB.

Pre-requisites: -

COURSE ASSESSMENT METHODS

DIRECT	
1.	Continuous Assessment Test I, II (Theory component)
2.	Open book test; Cooperative learning report, Assignment; Journal paper review, Group
	Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc
	(as applicable) (Theory component)
3.	Pre/Post - experiment Test/Viva; Experimental Report for each experiment (lab
component)	
4.	Model examination (lab component)
5.	End Semester Examination (Theory and lab component)
INDIRECT	
1. Course-end survey	

Signature of BOS Chairperson, ECE

THEORY COMPONENT

MULTIPLE INTEGRALS

9 Hours

Double integration - Cartesian coordinates - Change of order of integration - Triple integration in Cartesian coordinates - Applications: Area as double integral and Volume as triple integral.

VECTOR CALCULUS

9 Hours

Gradient, divergence and curl - Directional derivative - Irrotational and Solenoidal vector fields Green's theorem in a plane, Gauss divergence theorem and Stoke's theorem (excluding proofs) Verification of theorem and simple applications.

ANALYTIC FUNCTIONS 9 Hours

Functions of a complex variable - Analytic functions - Necessary conditions, Cauchy- Riemann equations in Cartesian coordinates and sufficient conditions (excluding proofs)- Properties of analytic function - Construction of analytic function by Milne Thomson method - Conformal mapping : $w=z+c, c z, 1 / z$ - Bilinear Transformation

COMPLEX INTEGRATION
 9 Hours

Cauchy's integral theorem - Cauchy's integral formula -Taylor's and Laurent's series - Singularities -Residues -Residue theorem -Application of residue theorem for evaluation of real integrals Contour Integration (excluding poles on the real axis).

LAPLACE TRANSFORMS

9 Hours

Definition - Properties: Superposition, Shift in t or Time Delay, Shift in s, Time Derivatives, Time Integral-Initial Value Theorem - Final Value Theorem - Transform of periodic functions - Inverse transforms - Convolution theorem - Applications: Solution of linear ordinary differential equations of second order with constant coefficients.

REFERENCES

1. Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 41st Edition, 2011.
2. Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill Co. Ltd., New Delhi, 11th Reprint, 2010.
3. Veerarajan T., Engineering Mathematics (for First Year), Tata McGraw Hill Pub. Co. Ltd., New Delhi, Revised Edition, 2007.
4. Kandasamy P., Thilagavathy K., and Gunavathy K., "Engineering Mathematics", S. Chand \& Co., New Delhi, (Reprint) 2008.
5. Kreyzig E., "Advanced Engineering Mathematics", Tenth Edition, John Wiley and sons, 2011.
6. Venkataraman M.K., "Engineering Mathematics", The National Pub. Co., Chennai, 2003.
7. Weir, MD, Hass J, Giordano FR: Thomas' Calculus Pearson education 12th ED, 2015.

M.Blurathi

Signature of BOS Chairperson, ECE

LAB COMPONENT

List of MATLAB Programmes:

1. Evaluating double integral with constant and variable limits.
2. Area as double integral
3. Evaluating triple integral with constant and variable limits
4. Volume as triple integral
5. Evaluating gradient, divergence and curl
6. Evaluating line integrals and work done
7. Verifying Green's theorem in the plane
8. Evaluating Laplace transforms and inverse Laplace transforms of functions including impulse.
9. Heaviside functions and applying convolution.
10. Applying the technique of Laplace transform to solve differential equations.

Theory: 45 Tutorial: $0 \quad$ Practical: $30 \quad$ Project: $0 \quad$ Total: 75 Hours
M.Bhrathi

Signature of BOS Chairperson, ECE

U18 PHI2201

Engineering Physics
(Common to AU, ECE, CE, MEC, ME)

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
$\mathbf{3}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{4}$

Course Outcomes

After successful completion of this course, the students should be able to
CO1: Understand the principles of motion and rotation of a rigid body in the plane.
CO2: Enhance the fundamental knowledge in properties of matter and its applications relevant to various streams of engineering and technology.

CO3: To introduce the phenomenon of heat and account for the consequence of heat transfer in engineering systems.

CO4:Toapply the concepts of electrostatics and dielectrics for various engineering applications.
CO5: To understand the basics of magnetostatics.
CO6: To introduce and provide a broad view of the smart materials and Nano science to undergraduates.

Pre-requisites:

High School Education

CO PO Mapping

Course Assessment methods

Direct	
1.	Continuous Assessment Test I, II (Theory component)
2.	Cooperative learning report, Assignment; Group Presentation, Project report, Poster
\quad preparation,	
3. Pre/Post - experiment Test/Viva; Experimental Report for each experiment (lab	
\quad component)	
4. Model examination (lab component)	
5.	End Semester Examination (Theory and lab component)
Indirect	
1. Course-end survey	

Theory Component contents

KINEMATICS \& RIGID BODY MOTION

9 Hours
Definition and motion of a rigid body in the plane; Rotation in the plane; Kinematics in a coordinate system rotating and translating in the plane; Angular momentum about a point of a rigid body in planar motion; Euler's laws of motion, their independence from Newton's laws, and their necessity in describing rigid body motion; Examples.

PROPERTIES OF MATTER
 9 Hours

Hooke's Law Stress - Strain Diagram - Elastic moduli - Relation between elastic constants - Poisson's Ratio - Expression for bending moment and depression - Cantilever - Expression for Young's modulus by Non-uniform bending and its experimental determination.

HEAT

9 Hours
Specific heat capacity, thermal capacity. Temperature rise. Coefficient of linear thermal expansion. Methods of measurement of thermal expansion. Thermal stresses in composite structures due to non-homogeneous thermal expansion. Applications -The bimetallic strip. Expansion gaps and rollers in engineering structures. Thermal conductivity: differential equation of heat flow. Lee's disc apparatus for determination of thermal conductivity. Thermal Insulation. Convection and radiation. Applications to refrigeration and power electronic devices.

ELECTROSTATICS \& MAGNETOSTATICS

9 Hours
ELECTROSTATICS : Maxwell's equation for electrostatics - E due to straight conductors, circular loop, infinite sheet of current - electric field intensity (D) - Electric potential - dielectrics - dielectric polarization - internal field - Clasious - Mosotti equation - dielectric strength applications.

MAGNETOSTATICS: Maxwell's equation for magnetostatics - B in straight conductors, circular loop, infinite sheet of current - Lorentz force, magnetic field intensity (H) - Biot- Savart's Law Ampere's Circuit Law -Magnetic flux density (B).

NEW ENGINEERING MATERIALS AND NANO TECHNOLOGY
 9 Hours

New Engineering Materials: Metallic glasses - preparation, properties and applications Shape memory alloys (SMA) - characteristics, properties of NiTi alloy applications advantages and disadvantages of SMA.
Nano Materials: synthesis - Ball milling - Sol-gel - Electro deposition - properties of nano particles and applications. - Carbon Nano Tubes - fabrication by Chemical Vapour Deposition - structure, properties \& applications.

Theory: 45 Tutorial: $0 \quad$ Practical: $0 \quad$ Project: $0 \quad$ Total: 45 Hours

REFERENCES

1. Essential University Physics, Vols. 1 and 2., Richard Wolfson, Pearson Education, Singapore, 2011.
2. Engineering Mechanics (2nd ed.), Harbola M. K., Cengage publications, New Delhi, 2009.
3. Concepts of Physics, H. C. Verma vol 1 and 2, Bharati Bhawan Publishers \& Distributors; First edition (2017).
4. Engineering Electromagnetics, W. H. Hayt and John A. Buck, 6th Edition, Tata McGraw Hill, New Delhi, 2014.
5. Theory and Problems of Electromagnetic Schaum's Outline Series, 5th Edition, Joseph A. Edminister, Tata McGraw Hill Inc., New Delhi, 2010.
6. Engineering Physics, Rajendran V., Tata McGraw-Hill Education Pvt. Ltd., 2010
7. Nano - the Essentials, Pradeep T., McGraw-Hill Education, Pvt. Ltd., 2007.

Lab component:

LIST OF EXPERIMENTS

1. Non-uniform bending - Determination of Young's modulus
2. Compound Pendulum - Determination of acceleration due to gravity
3. Spectrometer - Determination of wavelength of mercury source using grating
4. Air wedge - Determination of thickness of thin sheet
5. Semiconductor Laser:
a. Determination of wavelength of laser
b. Determination acceptance angle and numerical aperture of an optialfibre.
c. Determination of particle size
6. Melde's string - Determination of frequency of a turing fork
7. Determination of band gap of a semiconductor
8. Ultrasonic interferometer - Determination of velocity of sound and compressibility of a liquid
9. Luxmeter - Determination of efficiency of solar cell
10. Lee's disc - Determination of thermal conductivity of a bad conductor

Experiments for Demonstration:

1. Hall effect
2. Hardness Test
3. Four probe experiment
4. Hysteresis curve

Theory: $\mathbf{0}$ Tutorial: $0 \quad$ Practical: $\mathbf{3 0}$ Project: $0 \quad$ Total: $\mathbf{3 0}$ Hours

REFERENCES

1. Laboratory Manual of Engineering Physics, Dr. Y. Aparna \& Dr. K. Venkateswara Rao, V.G.S Publishers.
2. Practical Physics, G.L. Squires, Cambridge University Press, Cambridge, 1985.
3. Great Experiments in Physics, M.H. Shamos, Holt, Rinehart and Winston Inc., 1959.
4. Experiments in Modern Physics, A.C. Melissinos, Academic Press, N.Y., 1966.

U18MEI2201 ENGINEERING GRAPHICS

 (Common to ECE \& FT)| \mathbf{L} | \mathbf{T} | \mathbf{P} | \mathbf{J} | \mathbf{C} |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2}$ | $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{0}$ | $\mathbf{3}$ |

Course outcome

At the end of the course, the student will be able to:
CO1: Construct various plane curves.
CO2: Construct projection of points and projection of lines.
CO3: Develop projection of surfaces and solids.
CO4: Solve problems in sections of solids and development of surfaces.
CO5: Apply free hand sketching and concepts of isometric in engineering practice.
CO6: Draw engineering drawing in AutoCAD with dimensions.

Pre-requisites: -

DIRECT

1. Continuous Assessment Test I, II (Theory component)
2. Open Book Test, Assignment, Group Presentation
3. Viva, Experimental Report for each Experiment (lab Component)
4. Model Examination (lab component)
5. End Semester Examination (Theory and lab components)

INDIRECT

1. Course-end survey

PLANE CURVES, PROJECTION OF POINTS, LINES AND PLANES

10 Hours

Importance of graphics in design process, visualization, communication, documentation and drafting tools, Construction of curves - ellipse, parabola, and hyperbola by eccentricity method only. Orthographic projection of points.
Projections of straight lines located in first quadrant - determination of true length and true inclinations.
Projections of plane surfaces - polygonal lamina and circular lamina, located in first quadrant and inclined to one reference plane.

PROJECTION AND SECTION OF SOLIDS

10 Hours

Projection of simple solids - prism, pyramid, cylinder and cone. Drawing views when the axis of the solid is inclined to one reference plane.
Sectioning of simple solids - prisms, pyramids, cylinder and cone. Obtaining sectional views and true shape when the axis of the solid is vertical and cutting plane inclined to one reference plane.

DEVELOPMENT OF SURFACES, ISOMETRIC PROJECTIONS AND FREE-HAND SKETCHING 10 Hours

Development of lateral surfaces of truncated prisms, pyramids, cylinders and cones.
Isometric projection, Isometric scale, Isometric views of simple solids, truncated prisms, pyramids, cylinders and cones.
Free hand sketching techniques, sketching of orthographic views from given pictorial views of objects, including free-hand dimensioning.

INTRODUCTION TO AUTOCAD

15 Hours
Introduction to Drafting Software (AutoCAD) \& its Basic Commands. Introduction to coordinate systems, object selection methods, selection of units and precession. sketching - line, circle, arc, polygon, rectangle and ellipse. Working with object snaps, layers and object properties. Editing the objects - copy, move, trim, extend, working with arrays, mirror, scale, hatch, fillet and chamfer.

ISOMETRIC VIEWS WITH AUTOCAD
15 Hours
Building drawings - Single and double bed room house (sectional Top view only). Introduction to Motion path animation. Isometric views of simple solid blocks.

Theory: $\mathbf{3 0}$	Tutorial: $\mathbf{0}$	Practical:30	Project: 0	Total : 60 Hours

REFERENCES

1. Basant Agrawal and CM Agrawal, Engineering Drawing, McGraw-Hill, New Delhi, First Edition, 2008.
2. Venugopal K. and Prabhu Raja V., Engineering Graphics, New Age International (P) Limited, New Delhi, 2008.
3. Nataraajan K.V., Engineering Drawing and Graphics, Dhanalakshmi Publisher, Chennai, 2005.
4. Warren J. Luzadder and Jon. M. Duff, Fundamentals of Engineering Drawing, Prentice Hall of India Pvt. Ltd., New Delhi, Eleventh Edition, 2005.
5. Gopalakirishna K.R., Engineering Drawing (Vol. I \& II), Subhas Publications, 2001.
6. James Leach, AutoCAD 2017 Instructor, SDC Publications, 2016.

M.Bhrathi

Signature of BOS Chairperson, ECE
(Common to All Branches)

COURSE OUTCOMES

AFTER SUCCESSFUL COMPLETION OF THIS COURSE, THE STUDENTS SHOULD BE ABLE TO:

CO1:	Classify and make use of python programming elements to solve and debug simple				
logical problems.(K4,S3)		$	$	CO2:	Experiment with the various control statements in Python.(K3,S2)
:---	:---				
CO3:	Develop Python programs using functions and strings.(K3,S2)				
CO4:	Analyze a problem and use appropriate data structures to solve it.(K4,S3)				
CO5:	Develop python programs to implement various file operations and exception handling.(K3,S2)				

Pre-requisites:-

M.Bhurathi

Signature of BOS Chairperson, ECE

COURSE ASSESSMENT METHODS

DIRECT

1. Continuous Assessment Test I, II (Theory component)
2. Open Book Test, Assignment
3. Viva, Experimental Report for each Experiment (lab Component)
4. Model Examination (lab component)
5. End Semester Examination (Theory and lab components)

INDIRECT

1. Course-end survey

THEORY COMPONENT CONTENTS

BASICS OF PYTHON PROGRAMMING
 6 Hours

Introduction-Python Interpreter-Interactive and script mode -Values and types, operators, expressions, statements, precedence of operators, Multiple assignments, comments.

CONTROL STATEMENTS AND FUNCTIONS IN PYTHON

6 Hours
Conditional (if), alternative (if-else), chained conditional (if-elif-else)-Iteration-while, for, break, continue, pass - Functions - Introduction, inbuilt functions, user defined functions, passing parameters, return values, recursion, Lambda functions.

DATA STRUCTURES: STRINGS, LISTS and SETS

7 Hours
Strings-String slices, immutability, string methods and operations -Lists-creating lists, list operations, list methods, mutability, aliasing, cloning lists, list and strings, list and functions-list processing-list comprehension, searching and sorting, Sets-creating sets, set operations.

DATA STRUCTURES: TUPLES, DICTIONARIES

5 Hours

Tuples-Tuple assignment, Operations on Tuples, lists and tuples, Tuple as return value- Dictionariesoperations and methods, Nested Dictionaries.

FILES, MODULES, PACKAGES

6 Hours
Files and Exception-Text files, reading and writing files, format Operator-Modules-Python ModulesCreating own Python Modules-packages, Introduction to exception handling.

M.BLurathi

Signature of BOS Chairperson, ECE

REFERENCES

1. Ashok NamdevKamthane, Amit Ashok Kamthane, "Programming and Problem Solving with Python", Mc-Graw Hill Education,2018.
2. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", Second edition, Updated for Python 3, Shroff / O'Reilly Publishers, 2016.
3. Robert Sedgewick, Kevin Wayne, Robert Dondero, "Introduction to Programming in Python: An Inter-disciplinary Approach", Pearson India Education Services Pvt. Ltd., 2016.
4. Timothy A. Budd," Exploring Python", Mc-Graw Hill Education (India) Private Ltd., 2015.
5. Kenneth A. Lambert, "Fundamentals of Python: First Programs", CENGAGE Learning, 2012.
6. Charles Dierbach, "Introduction to Computer Science using Python: A Computational Problem Solving Focus", Wiley India Edition, 2013.

E BOOKS AND ONLINE LEARNING MATERIALS

7. www.mhhe.com/kamthane/python
8. Allen B. Downey, Think Python: How to Think Like a Computer Scientist, Second edition, Updated for Python 3, Shroff / O'Reilly Publishers, 2016
9. (http://greenteapress.com/wp/think-python/)

LAB COMPONENT CONTENTS

30 Hours

LIST OF EXPERIMENTS

1. Implement simple python programs using interactive and script mode.
2. Develop python programs using id() and type() functions
3. Implement range() function in python
4. Implement various control statements in python.
5. Develop python programs to perform various string operations like concatenation, slicing, Indexing.
6. Demonstrate string functions using python.
7. Implement user defined functions using python.
8. Develop python programs to perform operations on list
9. Implement dictionary and set in python
10. Develop programs to work with Tuples.
11. Create programs to solve problems using various data structures in python.
12. Implement python program to perform file operations.
13. Implement python programs using modules and packages.

Theory:30	Tutorial: 0	Practical: 30	Project: 0	Total: 60 Hours

ONLINE COURSES AND VIDEO LECTURES:

http://nptel.ac.in
https://www.edx.org/course/introduction-to-python-fundamentals-1
https://www.edx.org/course/computing-in-python-ii-control-structures-0
https://www.edx.org/course?search_query=Computing+in+Python+III\%3A+Data+Structures
M.Bhrathi

U18INI2600

ENGINEERING CLINIC -II

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
0	0	4	2	3

Course objectives

- To help the students look into the functioning of simple to complex devices and systems
- To enable the students to design and build simple systems on their own
- To help experiment with innovative ideas in design and team work
- To create an engaging and challenging environment in the engineering lab

Course Outcomes

After successful completion of this course, the students should be able to:
CO1: Identify a practical problem and find a solution
CO2: Understand the project management techniques
CO3: Demonstrate their technical report writing and presentation skills

Pre-requisite:

1. U18INI1600Engineering Clinic I

CO/PO MAPPING

(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak

Course Assessment methods:

Direct	Indirect
1. Project reviews 50\%	1. Course Exit Survey
2. Workbook report 10\%	
3. Demonstration \& Viva-voce 40%	

M.Blurathi

Signature of BOS Chairperson, ECE

Content:

The course will offer the students with an opportunity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide the students with ample opportunity to be innovative in designing and building a range of products from toys to robots and flying machines.

In the II semester, students will focus primarily on Raspberry pi based controllers with Python programming

GUIDELINES:

1. Practical based learning carrying credits.
2. Multi-disciplinary/ Multi-focus group of 5-6 students.
3. Groups can select to work on a specific tasks, or projects related to real world problems.
4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group as well as individual students.
5. The students have to display their model in the 'Engineering Clinics Expo' at the end of semester.
6. The progress of the course is evaluated based on reviews and final demonstration of prototype.

Theory: 0	Tutorial: 0	Practical: 60	Project: $\mathbf{3 0}$	Total: 90 Hours

SEMESTER III

M. Bhrathi

U18ECT3101

SIGNALS AND SYSTEMS

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	1	0	0	4

Course Outcomes (COs):

After successful completion of this course, the students should be able to

CO1:	Distinguish different types of signals and systems (K4).
CO2:	Analyze periodic signals using Fourier series (K4).
CO3:	Evaluate Continuous Time signals and system by using Fourier Transform (K4).
CO4:	Explain sampling of continuous time signals (K2).
CO5:	Analyze Discrete Time signals and systems by using DTFT and Z Transform (K4).

Pre-requisites:-

Course Assessment Methods

```
DIRECT
Continuous Assessment Test I, II
Assignment
End Semester Examination
INDIRECT
Course-end survey
```

CONTINUOUS AND DISCRETE TIME SIGNALS AND SYSTEMS
17 Hours
Continuous Time (CT) \&Discrete Time (DT) signals- Classification - standard signals - basic operations on signals - Continuous time and discrete time systems - properties - Linear Time Invariant (LTI) systems- Stability-Causality- Continuous and discrete convolution.

M.Bhurathi

Signature of BOS Chairperson, ECE

FOURIER ANALYSIS OF CT SIGNALS AND SYSTEMS

12 Hours
Fourier series analysis of periodic signals- spectrum - Properties of Continuous Time Fourier Series (CTFS) Convergence of CTFS - Representation of aperiodic signals by Continuous Time Fourier Transform(CTFT)spectrum - Properties of CTFT - Convergence of CTFT - CT system representation by differential equation Frequency response of systems characterized by differential equations.

SAMPLING

06 hours
Representation of continuous time signals by its samples - Sampling theorem - Reconstruction of a signal from its samples, aliasing-bandpass sampling.

FOURIER ANALYSIS OF DT SIGNALS AND SYSTEMS

12 Hours
Discrete Time Fourier Series (DTFS)-spectrum- -properties - Discrete Time Fourier Transform (DTFT) Properties - discrete time system representation by difference equations - Frequency response of systems characterized by difference equations.

Z TRANSFORM ANALYSIS OF SIGNALS AND SYSTEMS

13 Hours
Z transform - RoC -Forward and Inverse Transform use Residue, long Division, Partial Fraction methods Properties of Z transform - Pole-zero plot- Analysis and characterization of LTI system using Z transformfrequency response of DT systems
$\begin{array}{lllll}\text { Theory: } 45 & \text { Tutorial: } 15 & \text { Practical: } 0 & \text { Project: } 0 & \text { Total: } 60 \text { Hours }\end{array}$

REFERENCES:

1. Alan V. Oppenheim, Alan S. Willsky ,S.HamidNawab, "Signals and Systems", Pearson Education, $2^{\text {nd }}$ Edition, 2015.
2. Simon Haykin, Barry Van Veen, "Signals and Systems",John Wiley \& Sons, $3^{\text {rd }}$ Edition, 2012.
3. H. P. Hsu, "Signals and Systems" Schaum'sOutline Series, McGraw Hill Professional, $3^{\text {rd }}$ Edition, 2013
4. John G Proakis and Manolakis, "Digital Signal Processing Principles, Algorithms and Applications", Pearson Education, $4^{\text {th }}$ Edition, 2014.
5. M. J. Roberts, "Signals and Systems Analysis using Transform method and MATLAB",McGrawHill Education, Second Edition, 2011.
6. K. Lindner, "Signals and Systems", McGraw Hill International,1999

M.Blurathi

Signature of BOS Chairperson, ECE

U18ECI3202

ELECTRON DEVICES AND CIRCUITS

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	2	0	4

Course Outcomes (COs):

After successful completion of this course, the students should be able to

CO1:	Analyze the characteristics of semiconductor devices. (K4,S3).
CO2:	Design and analyze amplifier circuits(K4)
CO3:	Explore and verify the frequency response characteristics of amplifier(K3,S3).
CO4:	Apply and verify the concepts of Power amplifiers and tuned amplifiers (K3,S3).
CO5:	Apply the concepts of devices to design DC power supplies(K3)

Pre-requisites: -

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II
Assignment
End Semester Examination
INDIRECT
Course-end survey

SEMICONDUCTOR DIODES AND SPECIAL PURPOSE DIODES

09 Hours

Formation of PN junction - working principle - VI characteristics - PN diode currents - diode current equation - diode resistance - transition and diffusion capacitance - diode models - voltage breakdown in diodes.

Special purpose diodes : Zener diode - Varactor diode - Tunnel diode- Schottky diode, PNPN diode -Thyristors- RF diode.

M.Bhrathi

Signature of BOS Chairperson, ECE

BIPOLAR TRANSISTORS

12Hours
Construction - working - transistor currents - transistor configurations and input-output characteristics - Early effect (base-width modulation) - Ebers Moll model -Field-Effect Transistors : construction, working and VI characteristics of JFET.

MOSFET - enhancement MOSFET, depletion MOSFET, their working principle and VI characteristics, CMOS, MESFET, CCD.

Various biasing methods of BJT and stability factors-JFET \& MOSFET biasing.

SMALL-SIGNAL AMPLIFIERS - ANALYSIS AND FREQUENCY RESPONSE
 11 Hours

Small signal model of BJT, BJT amplifiers : CE, CB and CC amplifiers - multistage amplifiers differential amplifier - designing BJT amplifier (analysis using hybrid $-\pi$ model)

FET amplifiers : CS, CG and CD amplifiers - designing FET amplifier.
Frequency response: Low frequency response of BJT and FET amplifiers - Miller effect capacitance high frequency response of BJT and FET amplifiers.

POWER AMPLIFIERS AND TUNED AMPLIFIERS

07 Hours
Power amplifiers : definitions and amplifier types -Class A amplifier - Class B and Class AB push-pull amplifiers - Class C amplifiers- heat sink - designing power amplifier circuits.

Tuned amplifiers- single tuned - double tuned -staggered tuned amplifiers-design of basic tuned amplifier..

DC POWER SUPPLIES

06 Hours
Rectifiers and Filters : HWR, FWR, full-wave bridge rectifier, power supply filters (ripple factor and efficiency analysis), bleeder resistor.

Voltage regulators: voltage regulation, Zener diode shunt regulator, transistor series regulator, transistor shunt regulator, switching regulators, design of complete DC power supply circuit.

REFERENCES:

1. Jacob Millman, Christos C Halkias, Satyabrata Jit, "Electron Devices and Circuits", Tata McGraw Hill, $4^{\text {th }}$ Edition ,2015
2. Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory", Pearson Education, $11^{\text {th }}$ Edition, 2015.
3. Thomas L. Floyd, "Electronic Devices", 9th edition, Pearson Education, 2012.
4. David A Bell, "Fundamentals of Electronic Devices and Circuits", Fifth edition Oxford Press, 2009.
5. Adel .S. Sedra, Kenneth C. Smith, Micro Electronic circuits, $6^{\text {th }}$ Edition, Oxford University Press, 2010.

LAB COMPONENT:

LIST OF EXPERIMENTS:

1. Characteristics of PN Junction diode and Zener diode\& Regulator using Zener diode
2. Common Emitter/ Common base/Common Collector input-output Characteristics.
3. Characteristics of FET
4. Transfer characteristics of MOSFET
5. Frequency response of single-stage BJT \& FET amplifiers.
6. Design of power and tuned amplifier
7. Verifications Of KVL \& KCL
8. Verifications of Theorems
9. Development of power supply circuits using devices in PCB

DIGITAL SYSTEM DESIGN

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	2	0	4

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Apply Boolean algebra, Karnaugh map and Tabulation method to design combinational logic circuits (K3).
CO2: Design and verify sequential logic circuits using flipflops (K4).
CO3: Apply state machine models to design sequential logic circuits (K4).
CO4: Explain different logic families based on performance (K2).
CO5: Design combinational circuits using programmable logic devices (K3).

Pre-requisites: -

CO/PO Mapping:

(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak

Course Assessment Methods

DIRECT

Continuous Assessment Test I, II (Theory Component)
Assignment (Theory Component)
Group Presentation (Theory Component)
Pre/Post - experiment Test/Viva; Experimental Report for each experiment (lab component)
Model examination (lab component)
End Semester Examination (Theory and lab component)
INDIRECT
Course-end survey

THEORY COMPONENT CONTENTS

BASIC CONCEPTS OF DIGITAL SYSTEMS

09 Hours
Review of Number systems, Number Representation, Binary Arithmetic and Logic gates, Boolean algebra, Boolean postulates and laws - De-Morgan's Theorem - Principle of Duality, Simplification using Boolean algebra, Canonical forms - Sum of product and Product of sum - Minimization using Karnaugh map and Tabulation method.

COMBINATIONAL CIRCUITS

09 Hours
Realization of combinational logic using gates, Design of combinational circuits : Adder, Subtractor, Parallel adder / Subtractor, Carry look ahead adder, Magnitude Comparator, Parity generator and checker, Encoder, Decoder, Multiplexer, Demultiplexer - Function realization using Multiplexer, Decoder - Code converters.

M.Bhurathi

Signature of BOS Chairperson, ECE

ASYNCHRONOUS SEQUENTIAL CIRCUITS

09 Hours
Algorithmic State Machines (ASM) - Asynchronous sequential logic - Analysis procedure - Circuits with latches - Design procedure - Reduction of State and Flow tables - Race free state assignments - Hazards.

LOGIC FAMILIES AND PROGRAMMABLE DEVICES

09 Hours
Introduction to Logic families - ECL, TTL \&CMOS - Programmable Logic Devices - Programmable Logic Array (PLA) - Programmable Array Logic (PAL) - Implementation of combinational logic circuits using PLA, PAL.

REFERENCES:

1. M. Morris Mano, "Digital Logic and Computer Design", Pearson Education, $4^{\text {th }}$ Edition, 2016.
2. Donald D.Givone, "Digital Principles and Design", Tata Mc-Graw Hill Publishing company limited, New Delhi, 2003.
3. Thomas L. Floyd, "Digital Fundamentals", $10^{\text {th }}$ Edition, Pearson Education, NewDelhi, 2009.
4. Leach D, Malvino A P \& Saha, "Digital Principles and Applications" 8th Edition, Tata McGrawHill Publishing Company, 2014.
5. W H Gothman, "Digital Electronics: An introduction to theory and practice", $2^{\text {nd }}$ Edition, Prentice Hall of India, 2000.
6. John.M Yarbrough, "Digital Logic Applications and Design", Thomson - Vikas Publishing House, New Delhi, 2002.

LAB COMPONENT CONTENTS

LIST OF EXPERIMENTS

Design and implementation of:

1. Combinational logic functions
2. Adders and Subtractors
3. Magnitude Comparator
4. Multiplexer and De-multiplexer / Encoders and Decoders
5. Synchronous Counters / Asynchronous Counters

Theory: 45	Tutorial: 0	Practical: 30	Project: 0	Total: 75 Hours

M.Bhrathi

Signature of BOS Chairperson, ECE

ELECTROMAGNETIC FIELDS

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to

CO1:	Describe the fundamental concepts of static electric field (K2).
CO2:	Explain the fundamental concepts of static magnetic field (K2).
CO3:	Analyze the effect of static electric and magnetic fields in materials (K3).
CO4:	Understand the significance of Maxwell's equations for time varying field (K2).
CO5:	Apply Maxwell's equations to analyze wave propagation in various mediums (K3).

Pre-requisites:-

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II
Assignment
End Semester Examination
INDIRECT
Course-end survey

STATIC ELECTRIC FIELD

09 Hours

Coordinate Systems - Gradient , Divergence ,Curl - Divergence theorem, Stokes theorem - Coulomb's LawElectric Field Intensity - Electric Field due to discrete charges, charges distributed uniformly on an infinite line, finite line and infinite sheet.
Electric Scalar Potential - Electric Flux Density - Gauss Law and its applications.

STATIC MAGNETIC FIELD

09 Hours

Biot-Savart's Law- Magnetic Field intensity due to infinite and finite wire carrying current I - Ampere's circuital law. Magnetic flux density -Lorentz force equation - Force on a wire carrying a current placed in a magnetic field - Torque on a loop carrying a current - Magnetic moment - Magnetic Vector Potential

ELECTRIC AND MAGNETIC FIELDS IN MATERIALS

09 Hours
Poisson's and Laplace's equation - Electric Polarization - Capacitance - Capacitance of parallel plate capacitor and coaxial cable - Capacitance of parallel plate capacitor with two dielectrics - Electrostatic energy - Energy density - Boundary conditions for electric fields - Electric current - Current density - Point form of ohm's law - Continuity equation for current. Inductance - Inductance of loops and solenoids

- Mutual inductance -Energy density in magnetic fields - Magnetization and Permeability - Magnetic boundary conditions.

TIME VARYING ELECTRIC AND MAGNETIC FIELDS

09 Hours

Faraday's law - Transformer and Motional electromotive forces - Displacement current - Maxwell's equations in integral form and differential form -Maxwell's equation in Phasor form - Poynting Vector and the flow of power - Poynting theorem.
Introduction to field computation methods-FDM, FEM, MOM.

ELECTROMAGNETIC WAVES

09 Hours

Wave equations for conducting and non-conducting media - Wave equations in Phasor form -Uniform plane waves in perfect dielectrics, conductors and free space - Skin effect- Introduction to EM Shielding Case Study: Biological Effects of Electromagnetic Waves

Theory: 45 Hours \quad Tutorial: $0 \quad$ Practical: $0 \quad$ Project: $0 \quad$ Total: 45 Hours

REFERENCES:

1. William H.Hayt, J A Buck, "Engineering Electromagnetics" Tata McGraw Hill Education Private Limited, Seventh Edition, 2012.
2. E.C. Jordan \& K.G. Balmain, "Electromagnetic Waves and Radiating Systems," Prentice Hall of India, Second Edition, 2011.
3. S.Ramo, J.R.Whinnery and T.VanDuzer: "Fields and Waves in Communications Electronics" John Wiley \& Sons, Third edition, 2003.
4. M.N.O.Sadiku, "Elements of Engineering Electromagnetics", Oxford University Press, Fourth Edition, 2006.
5. Clayton.R.Paul, Keith W.Whites, Syed.A.Nasar "Introduction to Electro Magnetic Fields", WCB/McGraw-Hill, Third Edition, 2007.
6. David K.Cheng "Field and Wave Electromagnetics" Second Edition, Pearson Education Limited, 2014

Signature of BOS Chairperson, ECE

U18ECT3105

NETWORK THEORY

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	1	0	0	4

Course Outcomes (COs):

After successful completion of this course, the students should be able to

CO1:	Illustrate various components of circuit and perform analysis of the electrical networks.(K2)
CO2:	Apply circuit theory concepts / theorems to compute DC circuit parameters.(K3)
CO3:	Apply circuit theory concepts / theorems to compute AC circuit parameters. (K3)
CO4:	Classify the different two port network parameters. (K2)
CO5:	Interpret the transient response of RL, RC \& RLC circuits. (K2)
CO6:	Demonstrate the frequency response of resonance circuits. (K3)

Pre-requisites: -

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II
Assignment
End Semester Examination
INDIRECT
Course-end survey

DC CIRCUITS ANALYSIS

Basic Definitions: Charge, Current, Voltage and Power, Circuit elements: Resistors, Inductors, capacitors, Voltage and Current Sources - Ohm's Law, Kirchhoff's Current Law, Kirchhoff's Voltage Law, Circuit elements (R, L, C, Voltage and Current Sources) in Series and Parallel, Voltage and Current Division, Source Transformation, Delta-Star and Star- Delta transformation, Mesh Analysis, super mesh, Nodal analysis, Super node.

NETWORK THEOREMS

10Hours
Superposition Theorem, The venin's Theorem and Norton's Theorem, Maximum Power Transfer Theorem, Reciprocity Theorem, Verification of Theorems.

Signature of BOS Chairperson, ECE

SINUSOIDAL STEADY STATE ANALYSIS

10 Hours
Sinusoids, Phasors, Phasor representation of R, L and C, Phasor Diagrams, Impedance, Admittance, Susceptance, Conductance and Reactance-Two port networks-Impedance Parameters-Admittance ParametersHybrid Parameters-Transmission Parameters, Relation between parameters-

AC CIRCUIT POWER ANALYSIS

08 Hours
Instantaneous Power, Average Power, RMS Power, Apparent Power and Power Factor, Complex Power, Mesh Analysis \& Nodal Analysis, Verification of Maximum Power Transfer theorem.

FIRST ORDER AND SECOND ORDER CIRCUITS

11 Hours
Basic RL and RC Circuits: The Source-Free RL Circuit, the Source-Free RC Circuit, The Unit Step Function, Driven RL Circuits, Driven RC Circuits- Source free series and parallel RLC circuits.
RESONANCE AND COUPLED CIRCUITS
10 Hours
Frequency Response of Parallel and Series Resonance circuits-determination of Resonant Frequency, Q Factor and Bandwidth. Magnetically Coupled Circuits - Self Inductance, Mutual Inductance, Coefficient of Coupling, Energy in a coupled circuit, Linear Transformer, Ideal Transformer.
Theory: 45 Tutorial: 15 Practical: $0 \quad$ Project: $0 \quad$ Total: 60 Hours

REFERENCES:

1. Charles K. Alexander and Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", 3rd edition, McGraw-Hill, 2008.
2. David E. Johnson, Johny R. Johnson and John L. Hilburn, "Electric Circuit Analysis", 2nd edition, Prentice-Hall Int.
3. Murthy K.V.V., Kamath M.S., "Basic Circuit Analysis", Jaico Publishing House, 1999.
4. Norman Balabanian, "Electric Circuits", Int. Edition, McGraw-Hill, 1994.
5. Decarlo R.A. and Lin P.M.," Linear circuit analysis - The time domain, Phasor and Laplace transform approach", Oxford press, 2nd edition, 2003.
6. William H. Hayt, Jr Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuit Analysis", 7 th edition, Tata MC GrawHill, 2010
7. Joseph Edministor and Nahvi (Mohmood)," Theory \& Problems of Electric Circuits", 5th edition, MC Graw Hill, 2011.

M.Blurathi

Signature of BOS Chairperson, ECE

U18INI3600

ENGINEERING CLINIC -III

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
0	0	4	2	3

Course objectives

- To help the students look into the functioning of simple to complex devices and systems
- To enable the students to design and build simple systems on their own
- To help experiment with innovative ideas in design and team work
- To create an engaging and challenging environment in the engineering lab

Course Outcomes

After successful completion of this course, the students should be able to:
CO1: Identify a practical problem and find a solution
CO2: Understand the project management techniques
CO3: Demonstrate their technical report writing and presentation skills

Pre-requisite:

1. U18INI2600 Engineering Clinic II

CO/PO MAPPING														
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES (POs)													
	P01	PO2	PO3	PO4	PO5	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S	S	S	S	M	W		S			S		
CO2											S			
CO3										S				

Course Assessment methods:

Direct	Indirect
1.Project reviews 50\%	1. Course Exit Survey
2. Workbook report 10\%	
3. Demonstration \& Viva-voce 40\%	

Content:

The course will offer the students with an opportunity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide the students with ample opportunity to be innovative in designing and building a range of products from toys to robots and flying machines.

In the III semester, students will focus primarily on Design project combining concepts learnt in Engineering clinics I and II

GUIDELINES:

1. Practical based learning carrying credits.
2. Multi-disciplinary/ Multi-focus group of 5-6 students.
3. Groups can select to work on a specific task, or projects related to real world problems.
4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group as well as individual students.
5. The students have to display their model in the 'Engineering Clinics Expo' at the end of semester.
6. The progress of the course is evaluated based on reviews and final demonstration of prototype.
Theory: $\mathbf{0}$ Tutorial: $\mathbf{0} \quad$ Practical: $60 \quad$ Project: $\mathbf{3 0} \quad$ Total: $\mathbf{9 0}$ Hours

U18CHT3000

Environmental Science and Engineering (Common to All branches)

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
$\mathbf{3}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$

Course Outcomes

After successful completion of this course, the students would be able to
CO 1: Analyze the impact of engineering solutions in a global and societal context.
CO 2: Discuss contemporary issues that results in environmental degradation and would attempt to provide solutions to overcome those problems.
CO 3: Highlight the importance of ecosystem and biodiversity.
CO 4: Consider issues of environment and sustainable development in his/her personal and professional undertakings.
CO 5: Paraphrase the importance of conservation of resources.
CO 6: Play an important role in transferring a healthy environment for future generations.
CO/PO Mapping
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak

Course Assessment methods

Direct	Indirect
1. Internal Test I	Course end survey
2. Internal Test II	
3. Assignment	
4. Group presentation	

INTRODUCTION TO ENVIRONMENTAL STUDIES ANDNATURAL RESOURCES

 14 HoursDefinition, scope and importance - Need for public awareness - Forest resources: Use and overexploitation, deforestation, case studies - Timber extraction, mining, dams and their effects on forests and tribal people.
Water resources: Use and overutilization of surface and ground water, conflicts over water, dams - benefits and problems - Water conservation, rain water harvesting, watershed management. Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.
Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, case studies.
Energy resources: Growing energy needs, renewable and nonrenewable energy sources, use of alternate energy sources, case studies.
Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification, Wasteland reclamation - Role of an individual in conservation of natural resources.

ECOSYSTEMS AND BIODIVERSITY

9 Hours
ECOSYSTEM: Concept of an ecosystem - Structure and function of an ecosystem: Producers, consumers and decomposers, Food chain, Food web, Energy flow in the ecosystem and Ecological pyramids - Ecological succession - Introduction, types, characteristic features, structure and function of the (a) Forest ecosystem (b) Grassland ecosystem (c) Desert ecosystem
(d) Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries).

BIODIVERSITY: Introduction to Biodiversity - Definition: genetic, species and ecosystem diversity - Bio geographical classification of India - Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic values - India as a mega-diversity nation - Hot-spots of biodiversity - Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts Endangered and endemic species of India - Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

ENVIRONMENTAL POLLUTION

8 Hours

Definition - Causes, effects and control measures of: (a) Air pollution - Organic and inorganic pollution - cyclone separator, electrostatic precipitator (b) Water pollution (c) Heavy metal pollution (d) Noise pollution (e) Thermal pollution (f) Nuclear hazards - Role of an individual in prevention of pollution - Pollution case studies - Solid waste and hazardous Management: Causes, effects and control measures from factories, small scale and large scale industries - Waste minimization Disaster management: floods, earthquake, cyclone and landslides.

SOCIAL ISSUES AND THE ENVIRONMENT

7 Hours
From Unsustainable to Sustainable development - Urban problems related to energy Resettlement and rehabilitation of people; its problems and concerns, case studies - Issues and possible solutions - Climate change, global warming, acid rain, ozone layer depletion Environment Production Act - Air (Prevention and Control of Pollution) Act - Water (Prevention and control of Pollution) Act - Wildlife Protection Act - Forest Conservation Act -Issues involved in enforcement of environmental legislation - Human Rights.

M.Blurathi

Signature of BOS Chairperson, ECE

Population growth and explosion - Welfare Program - Environment and human health Communicable disease - Role of Information Technology in Environment and human health - Case studies.

Theory: $\mathbf{4 5}$ Hours
Total: 45 Hours

REFERENCES

1. G. Tyler Miller and Scott Spoolman, 'Environmental Science', Fourteenth Edition, Brooks Cole, 2012.
2. Gilbert M. Masters and Wendell P. Ela, 'Introduction to Environmental Engineering and Science', Third Edition, Pearson Education, 2013.
3. BharuchaErach, 'The Biodiversity of India', Mapin Publishing Pvt. Ltd., Ahmedabad, 2002.
4. Trivedi R.K and P.K.Goel, 'Introduction to Air Pollution', Techno-Science Publications, 2003.
5. Trivedi R.K., 'Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards', Vol. I and II, Enviro Media, 1996.
6. Cunningham, W.P.Cooper and T.H.Gorhani, 'Environmental Encyclopedia', Jaico Publication House, Mumbai, 2001.
7. Wager K.D., 'Environmental Management', W.B. Saunders Co., Philadelphia, USA, 1998.
8. Colin R. Townsend, Michael Begon and John L. Harper, 'Essentials of Ecology', Third Edition, Blackwell Publishing, 2008.

SEMESTER IV

M.Bhrathi

U18ECI4201

DIGITAL SIGNAL PROCESSING

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	2	0	4

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Apply DFT algorithm for signal analysis (K4).
CO2: Design, implement and analyze IIR filter for the given specification (K4).
CO3: Design, implement and analyze FIR filter for the given specification (K4).
CO4: Compare different structures for filter implementations (K4).
CO5: Analyze the effect of finite word length (K3).
CO6: Compare DSP Processor Architectures (K2).

Pre-requisites:

1.U18ECT3101 Signals and Systems

Course Assessment Methods

DIRECT

Continuous Assessment Test I, II (Theory Component)
Assignment (Theory Component)
Pre/Post - experiment Test/Viva; Experimental Report for each experiment (Lab component)
Model examination (lab component)
End Semester Examination (Theory and lab component)
INDIRECT
Course-end survey

DISCRETE FOURIER TRANSFORM

DFT and its properties, Relation between DTFT and DFT, Radix-2 FFT algorithms -DFT computation using Decimation in time and Decimation in frequency algorithms, Overlap-add and save Methods.

INFINITE IMPULSE RESPONSE DIGITAL FILTERS

12 Hours
Design of analog Butterworth and Chebyshev Filters - Frequency transformation in analog domain - Design of IIR digital filters - Impulse invariance techniques, Bilinear transform - Prewarping - Realization of IIR filters Direct, cascade and parallel forms, Lattice structure.

FINITE IMPULSE RESPONSE DIGITAL FILTERS

12 Hours
Linear phase FIR filters - Design using Rectangular, Hamming, Hanning and Blackmann Windows Frequency sampling method - Realization of FIR filters - Direct form and Lattice structure

FINITE WORD LENGTH EFFECTS
06 Hours
Representation of numbers, Quantization of filter coefficients in IIR and FIR filters, Round off effects in digital filters -Limit cycle Oscillations, Scaling, Quantization effect in fixed point realization of digital filters.

DSP ARCHITECTURE

06 Hours
Comparison of Von-Neumann and Harvard architecture - Architecture of TMS320C67XX Processors-
Addressing modes- Memory organization - Program Control - Pipelining- On-Chip Peripherals- Interrupts.

REFERENCES:

1. John G Proakis and Manolakis, "Digital Signal Processing Principles, Algorithms and Applications", Pearson, Fourth Edition, 2014.
2. Venkataramani B, and Bhaskar M, "Digital Signal Processors: Architecture, Programming \& Applications", Tata McGraw Hill, New Delhi, 2011.
3. Monson H.Hayes, "Digital Signal Processing "Schaum's Outline Series, McGraw Hill Professional, $2^{\text {nd }}$ Edition, 2011
4. Johny R. Johnson, "Introduction to Digital Signal Processing", PHI, 2006.
5. S.K. Mitra, "Digital Signal Processing, A Computer Based approach", Tata McGrawHill,, $4^{\text {th }}$ Edition, 2013.
6. E.C. Ifeachor and B.W. Jervis, "Digital signal processing - A Practical approach", Second edition, Pearson, 2002.

LAB COMPONENT

LIST OF EXPERIMENTS

1. Generate and perform operations on signals
2. Pole Zero plot and stability analysis of systems.
3. Convolution and correlation.
4. Implementation of algorithms for DFT/IDFT.
5. Spectral analysis of Sampled signal
6. Design of FIR filters.
7. Design of IIR filters.

Experiments using TMS320C67XX
8. Filter implementation
9. Verify DSP concepts with real time signals.

| Theory: 45 | Tutorial:0 Practical: 30 | Project: 0 | Total: 75 Hours |
| :--- | :--- | :--- | :--- | :--- |

M.Blurathi

Signature of BOS Chairperson, ECE

U18ECI4202 ANALOG ELECTRONICS AND INTEGRATED

 CIRCUITS| \mathbf{L} | \mathbf{T} | \mathbf{P} | \mathbf{J} | \mathbf{C} |
| :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 2 | 0 | 4 |

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Design and verify feedback amplifiers, LC and RC oscillators (K3,S3)
CO2: Describe the characteristics of operational amplifiers (K2).
CO3: Develop and analyze operational amplifier application circuits (K4,S3).
CO4: Build data converters for the given specifications (K3).
CO5: Operate 555 timer circuit and generate waveforms $(\mathrm{K} 3, \mathrm{~S} 3)$

Pre-requisites:

1.U18ECI3202 Electron Devices and circuits

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II
Assignment
End Semester Examination
INDIRECT
Course-end survey

FEEDBACK AMPLIFIER \& OSCILLATORS

09 Hours
Feedback Concepts - gain with feedback - effect of feedback on gain stability, distortion, bandwidth, input and output impedances; topologies of feedback amplifiers - analysis of series-series, shunt-shunt and shunt- series feedback amplifiers-Oscillators: Hartleys\&Colpitt‘s oscillators- phase shift\&Wien bridge.

BASICS OF OPERATIONAL AMPLIFIERS

Current mirror and current sources, Current sources as active loads- BJT Differential amplifier with active loads, Ideal Operational Amplifier - General operational amplifier stages -and internal circuit diagrams of IC 741, Open and closed loop configurations, DC and AC performance characteristics, slew rate, Frequency compensation.

APPLICATIONS OF OPERATIONAL AMPLIFIERS

12 Hours
Inverting \& Non-inverting voltage amplifiers - Voltage follower - Summing, scaling \& averaging amplifiers - AC amplifiers. Instrumentation Amplifiers -Differentiators and Integrators -Second order active filters Precision Rectifiers - Wave Shaping Circuits (Clipper and Clampers) - Log and Antilog Amplifiers - Analog voltage multiplier circuit and its applications -Comparators, Schimitttrigger and its applications - Sample and Hold circuit. .

WAVEFORM GENERATORS AND PLL

08 Hours
Waveform Generators: Sine-wave Generators - Square / Triangle / Saw-tooth Wave generators. IC 555 Timer: Monostable operation and its applications - Astable operation and its applications. PLL: Operation of the Basic PLL-Closed loop analysis of PLL-Voltage Controlled Oscillator-PLL applications.

DATA CONVERTORS

07 Hours
Digital to Analog Conversion: DAC Specifications - DAC circuits - Weighted Resistor DAC-R-2R Ladder Analog to Digital conversion: ADC specifications-ADC circuits-Ramp Type ADC-Successive Approximation ADC-Dual Slope ADC-Flash Type ADC.

REFERENCES:

1. Millman and Halkias. C., Integrated Electronics, Second edition TMH, 2009

2 D.Roy Choudhry, Shail Jain, —Linear Integrated Circuits, New Age International Pvt. Ltd., Fifth Edition, 2018
3. Ramakant A. Gayakwad, -OP-AMP and Linear ICsll, 4th Edition, Prentice Hall / Pearson Education, 2015.
4. Robert F.Coughlin, Frederick F.Driscoll,-Operational Amplifiers and Linear Integrated Circuitsll, Sixth Edition, PHI, 2001.
5. S.Salivahanan\& V.S. Kanchana Bhaskaran, —Linear Integrated Circuitsll, TMH,2nd Edition, 4th Reprint, 2016.
6. Sergio Franco, —Design with Operational Amplifiers and Analog Integrated Circuits II, 4th Edition, Tata Mc Graw-Hill, 2016

M.Blurathi

Signature of BOS Chairperson, ECE

LAB COMPONENT:

LIST OF EXPERIMENTS:

1. Frequency response of Feedback Amplifier.
2. Design of Oscillator circuits
3. Basic op-amp circuits inverting \& non-inverting amplifiers, adders and subtractors.
4. Linear applications of op-amp: Integrator and Differentiator.
5. Non-linear application of op-amp: precision rectifiers and comparators.
6. 555 Timer - Astable and Monostable Multivibrator.
7. Design of Active Filters LPF\& HPF.
8. Simulation experiments using PSPICE or Multisim.
9. Development of application circuits using IC's

Theory: 45 Tutorial:0 Practical: 30 Project: $0 \quad$ Total: 75 Hours

U18MAT4103
PROBABILITY AND RANDOM PROCESSES

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	1	0	0	4

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Analyze random or unpredictable experiments and investigate important features of random experiments and analyze various distributions.(K3)
CO2: Construct probabilistic models for observed phenomena through distributions.(K3)
CO3: Analyze various random processes with practical applications.(K4)
CO4: Analyze correlation related to various random processes and establish the properties of spectral densities.(K4)
CO5: Analyze linear time invariant systems performance for random inputs.(K4)

Pre-requisites: -

Course Assessment Methods

DIRECT

1. Continuous Assessment Test I, II
2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc. (as applicable)
End Semester Examination
INDIRECT
Course-end survey

BASIC CONCEPTS OF PROBABILITY

09 Hours
Sets: Definition and Operations, Probability: Definition through Sets, Joint and Conditional Probabilities, Bays's theorem

Random variable - Definition, Discrete and Continuous Random Variables - Probability Density Functions, Probability Distribution Functions -Properties - Gaussian,
Binominal, Poisson, Uniform, Exponential Distributions and their properties - Operations on one random variable.
Multiple Random Variables: - Joint Density and Distribution Functions -Marginal and conditional distributions -Properties - Operations on multiple random variables.

RANDOM PROCESSES

09 Hours
Random Process - Stationary Process - Wide sense stationary and Ergodic processes- Gaussian
Random Process - Markov process-Markov chain-Poisson process

CORRELATION AND SPECTRAL DENSITIES

09 Hours
Correlation: Autocorrelation, Cross Correlation and their properties - Covariance- R egression - Central Limit Theorem.
Power spectral density and its properties - Cross power spectral density and its properties -
Relationship between power spectrum and correlations - Wiener-Khintchine relation.

OPTIMUM FILTERING

09 Hours
Linear time invariant system - System transfer function - Properties - Linear systems with random inputs Autocorrelation and Cross Correlation of inputs and outputs - Spectral Characterization - Optimum linear time invariant systems - Matched Filter - Properties.

Theory: 45	Tutorial: $\mathbf{1 5}$	Practical: $\mathbf{0}$	Project: $\mathbf{0}$	Total: 60 Hours

REFERENCES:

1. Peebles. P.Z., "Probability, Random Variables and Random Signal Principles", Tata McGraw Hill, 4th Edition, New Delhi, 2002.
2. Cooper. G.R., McGillem. C.D., "Probabilistic Methods of Signal and System Analysis", 3rd Indian Edition, Oxford University Press, New Delhi, 2012.
3. Miller. S.L. and Childers. D.G., "Probability and Random Processes with Applications to Signal Processing and Communications", Academic Press, 2004.
4. Stark. H, and Woods. J.W., "Probability and Random Processes with Applications to Signal Processing", 3rdEdition, Pearson Education, Asia, 2002.
5. Yates. R.D. and Goodman. D.J., "Probability and Stochastic Processes", 2nd Edition, Wiley India Pvt. Ltd., Bangalore, 2012.

M.Blurathi

Signature of BOS Chairperson, ECE

U18ECT4104

TRANSMISSION LINES AND WAVEGUIDES

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	1	0	0	4

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Discuss the fundamental concepts of wave propagation in Transmission Lines and Wave Guides (K2).
CO2: Analyze the line parameters and various losses in transmission lines (K3).
CO3: Apply smith chart for line parameter and impedance calculations (K4).
CO4: Evaluate the characteristics of Parallel plane and Rectangular wave guides (K3).
CO5: Evaluate the characteristics of Circular wave guides and Rectangular cavity resonators (K3).

Pre-requisites:

1. U18ECT3004 Electromagnetic Fields

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
$\mathrm{CO1}$	S	M												
CO2	S	M												M
$\mathrm{CO3}$		S	M		M									M
CO4	S	M												
CO5	S	M												

Course Assessment Methods
DIRECT
Continuous Assessment Test I, II
Assignment
End Semester Examination
INDIRECT
Course-end survey

TRANSMISSION LINE THEORY

Transmission lines - Line parameters - General Solution of the transmission line - Standard forms for voltage and current - The infinite line - The two standard forms for the input impedance of a transmission line.
Characteristic impedance and Propagation Constant.
Waveform distortion - distortion less transmission line - Loading of transmission lines, Transfer impedance Reflection factor, reflection loss, return loss, Insertion loss

TRANSMISSION LINE AT RADIO FREQUENCIES

12 Hours
Standing waves and standing wave ratio on a line - Eighth wave line - Quarter wave line and the half wave line - Smith Chart - Applications of the Smith Chart -Problem solving using Smith chart- Single stub matching and Double stub matching.

GUIDED WAVES

12 Hours
Waves between parallel planes of perfect conductors - Transverse electric and transverse magnetic waves characteristics of TE and TM Waves - Transverse Electromagnetic waves - Velocities of propagation component uniform plane waves between parallel planes -Wave impedance.

RECTANGULAR WAVEGUIDES

12 Hours

Transverse Magnetic Waves in Rectangular Wave guides - Transverse Electric Waves in Rectangular Waveguides - characteristic of TE and TM Waves - Cutoff wavelength and phase velocity - Impossibility of TEM waves in waveguides - Dominant mode in rectangular waveguide - Attenuation of TE and TM modes in rectangular waveguides - Wave impedances- Excitation of modes.

CIRCULAR WAVE GUIDES AND RESONATORS

12 Hours
Bessel functions - Solution of field equations in cylindrical co-ordinates - TM and TE waves in circular guides - Wave impedances- Dominant mode in circular waveguide - excitation of modes - Microwave cavities, Rectangular cavity resonators, Q factor of rectangular cavity resonator for TE101 mode.

Theory: 45	Tutorial: 15	Practical: 0	Project: 0	Total: 60 Hours

REFERENCES:

1. J.D.Ryder "Networks, Lines and Fields", PHI, New Delhi, 2003
2. E.C. Jordan and K.G.Balmain "Electro Magnetic Waves and Radiating System", PHI, New Delhi, 2003.
3. Mathew N. O. Sadiku "Elements of Electro Magnetics", Seventh edition, Oxford, New York, 2010.
4. Ramo, Whineery and Van Duzer: "Fields and Waves in Communication Electronics" John Wiley, 2003.
5. Clayton. R. Paul, Keith W. Whites, Syed. A. Nasar "Introduction to Electro Magnetic Fields", Third edition, WCB/McGraw-Hill, 1998.

M.Blurathi

Signature of BOS Chairperson, ECE

U18INI4600
ENGINEERING CLINIC IV

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
0	0	4	2	3

Course objectives

- To help the students look into the functioning of simple to complex devices and systems
- To enable the students to design and build simple systems on their own
- To help experiment with innovative ideas in design and team work
- To create an engaging and challenging environment in the engineering lab

Course Outcomes

After successful completion of this course, the students should be able to:
CO1: Identify a practical problem and find a solution
CO2: Understand the project management techniques
CO3: Demonstrate their technical report writing and presentation skills

Pre-requisite:

1.U18INI3600 Engineering Clinic III

Course Assessment methods:

Direct	Indirect
1.Project reviews 50\%	1. Course Exit Survey
2. Workbook report 10\%	
3. Demonstration \& Viva-voce 40\%	

Content:

The course will offer the students an opportunity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide the students with ample opportunity to be innovative in designing and building a range of products from toys to robots and flying machines.

In the IV semester, students will focus primarily on Reverse engineering project to improve performance of a product.

GUIDELINES:

1. Practical based learning carrying credits.
2. Multi-disciplinary/ Multi-focus group of 5-6 students.
3. Groups can select to work on a specific tasks, or projects related to real world problems.
4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group as well as individual students.
5. The students have to display their model in the 'Engineering Clinics Expo' at the end of semester.
6. The progress of the course is evaluated based on reviews and final demonstration of prototype.

Theory: 0 Tutorial: $0 \quad$ Practical: $\mathbf{6 0} \quad$ Project:30 Total: 90 Hours

U18INT4000

CONSTITUTION OF INDIA

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
$\mathbf{2}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$

Course Outcomes:

After successful completion of this course, the students will be able to:

CO 1: Gain Knowledge about the Constitutional Law of India
CO 2: Understand the Fundamental Rights and Duties of a citizen
CO 3: Apply the concept of Federal structure of Indian Government
CO 4: Analyze the Amendments and Emergency provisions in the Constitution
CO 5: Develop a holistic approach in their life as a Citizen of India

Pre-requisites

CO/PO Mapping

(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak

COs Programme Outcomes (POs)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						M			W			S		
CO 2						S		S				M		
CO 3			S						M	S		W		
CO 4								W	M			M		
CO5						M		M				S		

Course Assessment methods

Direct
1. Group Activity / Quiz/ Debate / Case studies 2. Class test / Assignment
Indirect
Surveys

M.Blurathi

Signature of BOS Chairperson, ECE

THEORY COMPONENT:

Module.1: Introduction to Indian Constitution

4 hours
Meaning of the constitution law and constitutionalism - Historical perspective of the Constitution

- Salient features and characteristics of the Constitution of India

Module.2: Fundamental Rights

8 hours

Scheme of the fundamental rights - Right to Equality - Fundamental Right under Article 19 - Scope of the Right to Life and Liberty - Fundamental Duties and its legal status - Directive Principles of State Policy - Its importance and implementation

Module.3: Federal Structure

8 hours
Federal structure and distribution of legislative and financial powers between the Union and the States - Parliamentary Form of Government in India - The constitutional powers and status of the President of India

Module.4: Amendment to Constitution

6 hours
Amendment of the Constitutional Powers and Procedure - The historical perspectives of the constitutional amendments in India

Module.5: Emergency Provisions 4 hours
National Emergency, President Rule, Financial Emergency Local Self Government Constitutional Scheme in India

Theory: 30 Tutorial: $0 \quad$ Practical: $0 \quad$ Project: $0 \quad$ Total: 30 hours

REFERENCES

1. Constitution of India - Ministry of Law \& Justice - PDF format awmin.nic.in/coi/coiason29july08.pdf
2. Introduction to the Constitution of India by DurgadasBasu
3. The Constitution of India-Google free material - www.constitution.org/cons/india/const.html
4. Parliament of India-PDF format. download.nos.org/srsec317newE/317EL11.pdf
5. The Role of the President of India - By Prof.Balkrishna
6. Local Government in India - E Book - Pradeep Sachdeva https://books.google.com/books/.../Local_Government_in_In...
M.Blurathi

Signature of BOS Chairperson, ECE

U18VET4101	UNIVERSAL HUMAN VALUES 2: UNDERSTANDING HARMONY	\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}

COURSE OUTCOMES:

After successful completion of this course, the students shall be able to

CO 1:	Develop a holistic perspective based on self- exploration about themselves (human being), family, society and nature/existence.
CO 2:	Understand (or develop clarity) of the harmony in the human being,family, society and nature/existence
CO 3:	Strengthen their self-reflection.
CO 4:	Develop commitment and courage to act.

Pre-requisites: - None. Universal Human Values 1 (Desirable)
CO-PO AND CO-PSO MAPPING:

CO/PO Mapping (S/M/W indicates strength of correlation)										S-Strong, M-Medium, W-Weak				
COs	Programme Outcomes (POs)												PSOs	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						M	M	M	S			M	-	-
CO 2						S	M		S	S		S	-	-
CO3								M	M		W	S	-	-
CO4								S	M		M	M	-	-

COURSE ASSESSMENT METHODS:

Direct
1. Assessment by faculty mentor
2. Self-assessment
3. Socially relevant project/Group Activities/Assignments
4. End Semester Examination
Indirect
1. Assessment by peers (Survey form)

Module 1: Course Introduction - Need, Basic Guidelines, Content and Process for Value Education

1. Purpose and motivation for the course, recapitulation from Universal Human Values-I.
2. Self-Exploration-what is it? - Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration.
3. Continuous Happiness and Prosperity- A look at basic Human Aspirations
4. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority.
5. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario
6. Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking.

Module 2: Understanding Harmony in the Human Being - Harmony in Myself!

1. Understanding human being as a co-existence of the sentient ' I ' and the material 'Body'.
2. Understanding the needs of Self ('I') and 'Body' - happiness and physical facility.
3. Understanding the Body as an instrument of ' I ' (I being the doer, seer and enjoyer).
4. Understanding the characteristics and activities of ' I ' and harmony in ' I '.
5. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail.
6. Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available tome. Identifying from one's own life.

Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease.

Module 3: Understanding Harmony in the Family and Society- Harmony in HumanHuman Relationship

1. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship
2. Understanding the meaning of Trust; Difference between intention and competence
3. Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship
4. Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
5. Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives.

Module 4: Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

1. Understanding the harmony in the Nature
2. Interconnectedness and mutual fulfilment among the four orders of nature- recyclability andselfregulation in nature.
3. Understanding Existence as Co-existence of mutually interacting units in all-pervasivespace.
4. Holistic perception of harmony at all levels of existence.
5. Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

Module 5: Implications of the above Holistic Understanding of Harmony on ProfessionalEthics

1. Natural acceptance of human values
2. Definitiveness of Ethical Human Conduct
3. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
4. Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
5. Case studies of typical holistic technologies, management models and production systems
6. Strategy for transition from the present state to Universal Human Order:
a. At the level of individual: as socially and ecologically responsible engineers,technologists and managers
b. At the level of society: as mutually enriching institutions and organizations
7. Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions e.g. Todiscuss the conduct as an engineer or scientist etc.

COURSE DURATION:

No	MODULE	HOURS
1	Module 1	[7 Theory+ 3 Tutorial] 10 Hrs
2	Module 2	[6 Theory+ 3 Tutorial] 9 Hrs
3	Module 3	[7 Theory+ 3 Tutorial] 10 Hrs
4	Module 4	[5 Theory+ 3 Tutorial] 8 Hrs
5	Module 5	[5 Theory+ 3 Tutorial] 8 Hrs
	Total	$\mathbf{4 5}$

Theory: $\mathbf{3 0}$ Hours \quad Tutorial:15 Practical: $0 \quad$ Project: $0 \quad$ Total: 45 Hours

TEXT BOOK

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

REFERENCE BOOKS

1. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
3. The Story of Stuff (Book).
4. The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi.
5. Small is Beautiful - E. F Schumacher.
6. Slow is Beautiful - Cecile Andrews
7. Economy of Permanence - J C Kumarappa
8. Bharat Mein Angreji Raj - PanditSunderlal
9. Rediscovering India - by Dharampal
10. Hind Swaraj or Indian Home Rule - by Mohandas K. Gandhi
11. India Wins Freedom - Maulana Abdul Kalam Azad
12. Vivekananda - Romain Rolland (English)
13. Gandhi - Romain Rolland (English)
14. https://www.youtube.com/watch?v=E1STJoXCXUU\&list=PLWDeKF97v9 SP_Kt6jqzA3pZ3yA7g_OAQz
15. https://www.youtube.com/channel/UCo8MpJB_aaVwB4LWLAx6AhQ
16. https://www.uhv.org.in/uhv-ii

M.Blurathi

Signature of BOS Chairperson, ECE

SEMESTER V

M.Blurathi

U18ECI5201

COMMUNICATION ENGINEERING- I

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	2	0	4

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Demonstrate basic building blocks of communication systems (K2).
CO2: Compare the performance of amplitude modulation techniques (K4,S3).
CO3: Implement and analyze angle modulation techniques (K4,S3).
CO4: Discriminate and implement different analog pulse Modulation techniques (K3,S3).
CO5: Apply and demonstrate digital pulse modulation techniques. (K3,S3)

Pre-requisites:

1. U18ECT3101-Signals and Systems

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S								S					M
CO2	S	M							S					M
CO3	S	M							S					M
CO4	S	M							S					M
CO5	S	M							S					M

Course Assessment Methods

DIRECT

Continuous Assessment Test I, II (Theory Component)
Assignment (Theory Component)
Pre/Post - experiment Test/Viva; Experimental Report for each experiment (Lab component)
Model examination (lab component)
End Semester Examination (Theory and lab component)

INDIRECT

Course-end survey

THEORY COMPONENT CONTENT:

INTRODUCTION

Electronic Communication Systems - Electromagnetic Spectrum -Communication Channels. Representation of signals: Hilbert transform - I-Q Representation of pass-band signal.
Noise - Types of noise -Signal to noise ratio - Noise Factor - Noise Figure - Mathematical Representation of White noise and Narrowband Noise.

M.Bhurathi

Signature of BOS Chairperson, ECE

AMPLITUDE MODULATION

12 Hours
Linear summing, Nonlinear mixing - Multiplexing-Modulation, Need for Modulation - Principles of Amplitude modulation - Mathematical Representation, Waveforms - Spectrum - Bandwidth - Phasor representation, Power Relations. Types - DSBFC, DSBSC, SSBSC, VSB - Square law, Switching Modulators, Generation of AM Signal - Class A Modulator, Balanced Ring Modulator, Filter Method, Phase Shift Method, Demodulation of AM Signal - Coherent Detection- Costas Loop, Envelope Detector. AM Transmitter - Receiver Characteristics - Super heterodyne Receiver - Noise in AM receivers

ANGLE MODULATION

12 Hours

Basic Principles - Types of Angle Modulation: Frequency Modulation, Phase Modulation - Mathematical Representation - Waveforms - Spectrum - Bandwidth - Power - Relationship between FM and PM - Narrowband and Wideband FM - Phasor Representation.
Generation of FM signal - FM Reactance modulator - Direct and Indirect FM Transmitters-Demodulation of FM Signals: Tuned Circuit Frequency Discriminators - Balanced slope detector, Foster-Seely Discriminator - PLL FM receiver. Noise in FM Receivers - Pre-emphasis and De-emphasis - Capture effect - Threshold effect Performance Comparison of AM and FM Systems.

04 Hours

PULSE ANALOG MODULATION SCHEMES: Analog pulse modulation- PAM, PPM, PWM, Case study - Impulse Radio.

BASEBAND PULSE DIGITAL MODULATION SCHEMES: Pulse Code Modulation - Quantization-
Companding- A-law \& μ-law algorithms - Linear Prediction - Differential Pulse Code Modulation, Adaptive differential pulse code modulation - Delta Modulation-Adaptive Delta Modulation. Line coding techniquesNRZ / RZ - unipolar, polar, bipolar and biphase signals.

REFERENCES:

1. Simon Haykin, "Communication Systems", John Wiley \& Sons, Fifth Edition, 2009.
2. Herbert Taub, Donald L Schilling and GoutamSaha, "Principles of Communication S ystems", McGraw Hill, Fourth Edition, 2013.
3. B.P.Lathi, ZhiDing. " Modern Digital and Analog Communication Systems", Oxford University Press, F ourth Edition, 2009.
4. John G. Proakis, MasoudSalehi, "Communication Systems Engineering", Pearson Education, 2008.
5. Ferrel G. Stremler, " Introduction to Communication Systems", Prentice-Hall, Fourth Edition, 2001.
6. W. Tomasi, "Electronic Communication Systems", Prentice-Hall, Fourth Edition 2001.

M.Bhurathi

Signature of BOS Chairperson, ECE

LAB COMPONENT CONTENT:

LIST OF EXPERIMENTS

Design, Implementation/simulation analysis of the following:

1. Amplitude Modulation anddemodulation.
2. Frequency Modulation and demodulation.
3. Pre-emphasis and de-emphasis.
4. RF mixer circuit and IF amplifier
5. Audio amplifier.
6. Analog Pulse Modulation.
7. AM and FM receiver characteristics
8. Line coding techniques.
9. Digital Pulse Modulation Techniques.
Theory: 45 Tutorial: $0 \quad$ Practical: $30 \quad$ Project: $0 \quad$ Total: $\mathbf{7 5}$ Hours
M.Blurathi

Signature of BOS Chairperson, ECE

U18ECI5203

COMMUNICATION NETWORKS

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	2	0	4

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Describe network topologies, protocols and models (K2).
CO2: Demonstrate and analyse data link layer protocols and LAN standards (K3,S4).
CO3: Analyze routing algorithms and methods to improve QoS. (K3,S4)
CO4: Summarize transport layer protocols and congestion controls methods.(K2)
CO5: Describe various application layer services. (K2)
CO6: Implement and Analyze cryptographic and security techniques. (K3,S4)

Pre-requisites: -

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	P06	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	S													S
CO2	S	W	M		S							W		S
CO3	S	S	M		S				M	M		W		S
CO4	S	M							M	M				S
CO5	S	M		W										S
CO6		S	M	W	S							W		S

Course Assessment Methods

DIRECT

Continuous Assessment Test I, II (Theory Component)
Assignment (Theory Component)
Pre/Post - experiment Test/Viva; Experimental Report for each experiment (Lab component)
Model examination (lab component)
End Semester Examination (Theory and lab component)
INDIRECT
Course-end survey

DATA COMMUNICATIONS

Introduction to networks -Topologies - Protocols and Standards-ISO/OSI model-TCP/IP- Transmission Media and Connectors, Switching Techniques, Connecting devices - Switches, Routers, Gateways.

M.Bhurathi

Signature of BOS Chairperson, ECE

DATA LINK LAYER

09 Hours
LAN: Ethernet IEEE 802.3, IEEE802.5, IEEE802.11, FDDI, Bridges. Error detection and correction-Forward Error Correction -Flow Control and Error control techniques - Stop and wait - Go back N ARQ - Selective repeat ARQ - sliding window techniques - HDLC.

NETWORK LAYER

09 Hours

Internetworks - Packet Switching and Datagram approach - IPv4 - addressing methods - Subnetting \& Supernetting - IPv6. Routing - Distance Vector Routing, Link State Routing, Path Vector Routing. Quality of services (QOS) - methods to improve QOS parameters-Trunking, VPN.

TRANSPORT LAYER AND APPLICATION LAYER
09 Hours
Functions of transport layer - Multiplexing - Sockets - User Datagram Protocol (UDP) - Transmission Control Protocol (TCP) - Congestion Control - Differentiated and Integrated Services - RSVP. Application layer: Domain Name Space (DNS), SMTP, FTP, HTTP, WWW.

NETWORK SECURITY

09 Hours
Symmetric key cryptography - Data Encryption standard \& Advanced Encryption Standard. Asymmetric key cryptography - RSA \& Diffie-Hellman algorithms. Internet Security - Application layer security and firewallsCase study on NV, SDN for IoT Systems.

REFERENCES:

1. Behrouz.A.Foruzan, -Data communication and Networking, Fifth Edition, Tata McGraw-Hill, 2013.
2. Andrew S. Tannenbaum,-Computer Networks, Fourth Edition, PHI, 2003
3. James.F.Kurouse \&W.Rouse, -Computer Networking: A Top down Approach Featuring, Addison Wesley,2009.
4. Larry.L.Peterson \&Peter.S.Davie, —Computer Networks, third edition, Harcourt AsiaPvt.Ltd,2007

LAB COMPONENT:

LIST OF EXPERIMENTS

1. Implementation of CSMA/CD protocol for Ethernet LAN.
2. Implementation of CSMA/CA protocol for wireless LAN.
3. Implementation of Token passing access in BUS-LAN and RING-LAN.
4. Analysis of QoS parameters in ARQ Techniques
5. Simulation of Distance Vector Routing protocol
6. Simulation of Link State Routing protocol
7. Configuration of a Network Topology using Packet tracer.
8. Analysis of Network packets transmission using Wire shark.
9. Analysis of Encryption and Decryption algorithm.
Theory: 45 Tutorial: 0 Practical: 30 Project: $0 \quad$ Total: 75 Hours

M. Bhurathi

Signature of BOS Chairperson, ECE

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Apply techniques for system modelling (K3).
CO2: Analyze the systems in time domain (K3).
CO3: Demonstrate the frequency domain analysis of the system (K3).
CO4: Discuss various stability analysis techniques (K3).

Pre-requisites: -

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	M	W										M	M
CO2	S	M	W										M	M
CO3	S	M	W										M	M
CO4	S	M	W										M	M

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II
Assignment
End Semester Examination
INDIRECT
Course-end survey

CONTROL SYSTEM MODELLING

09 Hours
Basic elements in control systems - Open and closed loop systems -Mathematical modelling of physical systems: Transfer function model of Mechanical and Electrical systems- Block diagram reduction techniques - Signal flow graphs.

TIME RESPONSE ANALYSIS

09 Hours
Time response - Types of test input-step, ramp, impulse and parabolic inputs - I order system response for step, ramp and impulse input and II order system Response for step input- Time domain specifications -Error coefficients - Steady state error - P, PI, PID modes of feedback control

FREQUENCY RESPONSE ANALYSIS

09 Hours
Frequency response - Frequency domain specifications- Correlation between frequency domain and time domain specifications- Polar plot - Bode plot.

STABILITY OF CONTROL SYSTEM

09 Hours
Definition of Stability - Location of roots of Characteristics equation in S plane for stability - Routh Hurwitz criterion - Root locus Techniques - Gain margin and phase margin - Statement of Nyquist stability criterions.

> M.Bhurathi

Signature of BOS Chairperson, ECE

Performance criteria - Lag, Lead and Lag-Lead networks Compensator design using Bode plots
Theory: 45 Tutorial: $0 \quad$ Practical: $0 \quad$ Project: $0 \quad$ Total: 45Hours

REFERENCES:

1. K. Ogata, "Modern Control Engineering", $5^{\text {th }}$ Edition, Pearson Education, 2010, New Delhi.
2. I.J. Nagrath\& M. Gopal, "Control Systems Engineering", $5{ }^{\text {th }}$ Edition, New Age International Publishers, 2007.
3. B.C. Kuo, "Automatic Control Systems", $7^{\text {th }}$ Edition, Prentice Hall of India Ltd., 2003, New Delhi.
4. M. Gopal, "Control Systems, Principles \& Design", $4^{\text {th }}$ Edition, Tata McGraw Hill, 2012, New Delhi.
5. R. Anandha Natarajan and B. Ramesh Babu, "Control System Engineering", $3^{\text {rd }}$ Edition, Scitech Publication, 2009.

M.Bhrathi

Signature of BOS Chairperson, ECE

U18ECT5005 ANTENNAS AND WAVE PROPAGATION

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Describe different antenna parameters (K2).
CO2: Design and analyze various wire antennas (K4).
CO3: Compare different antenna arrays (K2).
CO4: Illustrate techniques used for antenna parameter measurements (K3)
CO5: Analyze the performance of aperture antennas (K4).
CO6: Identify the different types of propagation of radio waves at various frequencies. (K2)

Pre-requisites:

1.U18ECT4104 Transmission Lines and Waveguides

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2
CO1	S	M												M
CO2		S	M											M
CO3		S	M											M
CO4	S	M	M											M
C05		S	M											M
CO6		S												M

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II
Assignment
End Semester Examination
INDIRECT
Course-end survey

ANTENNA FUNDAMENTALS

09 Hours
Types of antennas- Radiation mechanism, Radiation Pattern, Radiation intensity, Beam solid angle, Gain, Directive gain, Power gain, Directivity, Beamwidth. Bandwidth, Reciprocity principle, Effective length, Effective area, Radiation Resistance, Friis Transmission formula, Antenna Field Zones, Polarization, Antenna noise temperature, Self and mutual impedances of antennas.

M.Bhurathi

Signature of BOS Chairperson, ECE

WIRE ANTENNAS

09 Hours
Concept of vector potential- Retarded vector potential-Fields associated with Hertzian dipole. Power radiated and radiation resistance of Hertzian dipole. Radiation from half-wave dipole and quarter-wave monopole, Power radiated and Radiation resistance of half wave dipole and quarter wave monopole- Folded dipole, Loop antenna, Helical antenna, Long wire antenna, V-antenna, Rhombic antenna, Yagi-uda antenna, Log periodic antenna.

ANTENNA ARRAYS AND MEASUREMENT

09 Hours
Antenna Arrays - Broadside and End fire array -Expression for electric field from two and four element arrays - N element linear array - Pattern multiplication- Binomial array
Antenna Measurement: Radiation Pattern, Gain, Directivity, Impedance, Beam width and Efficiency Measurements.

SPECIAL ANTENNAS

09 Hours
Slot antenna-Relation between dipole and slot impedances, Horn antenna - Types, Parabolic reflector antennas and its feed systems, Microstrip antenna. Antennas for mobile handsets and base stations- Antennas for Satellite Communication- Antenna for Radar systems. Adaptive antenna, Ultra-Wideband Antennas, - Selection of antenna based on the frequency of operation

WAVE PROPAGATION

9 Hours
Modes of propagation -Ground wave propagation - Calculation of field strength at a distance. Sky wave propagation-Structure of ionosphere. Effective dielectric constant of ionized region-Refractive index, Critical frequency, Maximum usable frequency, Skip distance - Effect of earth's magnetic field. Space wave propagation-Resultant of direct and reflected wave at the receiver

| Theory: 45 | Tutorial: 0 | Practical: 0 | Project: 0 | Total: $\mathbf{4 5}$ Hours |
| :--- | :--- | :--- | :--- | :--- | :--- |

REFERENCES:

1. John D. Kraus and Ronalatory Marhefka, "Antennas for all applications", Tata McGraw-Hill, Fifth Edition, 2017.
2. Edward. C. Jordan and Keith G Balmain, "Electro Magnetic Waves and Radiating Systems", Prentice Hall of India, Second Edition, Reprint, 2011.
3. K.D. Prasad, "Antennas and Wave Propagation", Sathyaprakasan Tech India Publications- New Delhi2009
4. Robert. E. Collin, "Antennas and Radio Propagation", McGraw-Hill, 1987.
5. Constantine. A. Ballanis," Antenna Theory: Analysis and Design ",JohnWiley\& Sons, second edition, 2003.
6. A.R. Harish, M. Sachidanada, "Antennas and Wave propagation", Oxford University Press, 2007.

M.Bhurathi

Signature of BOS Chairperson, ECE

EMBEDDED PROCESSOR ARCHITECTURE

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
$\mathbf{3}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{4}$

Course Outcomes

After successful completion of this course, the students should be able to

CO1: Recall the concepts of the Microprocessor and its variants (K1)
CO2: Explain the architecture of ARM7 embedded processor (K2)
CO3: Explain the ARM7 ISA and illustrate assembly level programming (K2)
CO4: Explain the organization concepts of the embedded processor (K2)
CO5: Explain the BUS architectures involved with ARM processor (K2)

Pre-requisite

U18ECI3203 - Digital System Design

CO/PO Mapping(S/M/W indicates strenthC-Strong M-Medium W-Weak														
COs	Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	L													
CO 2		M	M											S
CO 3		M	M		S									S
CO4		M	M											S
CO5	M													

Course Assessment methods:

Direct	Indirect
1. Continuous Assessment Test I, II	Course end survey
2. Written Assignment	
3. Quiz	
4. End Semester Examination	

Introduction

9 Hours
Introduction to Microprocessor - Microprocessor Components - Birds eye view of Computer Architecture - Different Microprocessor - 4004, 8085, 8086, ARM, MIPS - Microcontroller -System-on-chip- System-on-board - Single Board Computer - Buses - Address Bus - Data Bus Control Bus

Introduction to ARM Processor

9 Hours
Architecture - Components - Instruction level registers and Special Function Registers - General Purpose Registers - Register Design - ALU - Multiplier - Multiplier Design - Barrel Shifter Design of Barrel Shifter - Sequential Multiplication Algorithm - Booths Algorithm - Division Algorithm (Restoring and Non-Restoring)

Instruction Set Architecture
9 Hours
ARM \& Thumb Instructions - Addressing Modes - Types of Instructions - Endianness - Assembly Programming - Instruction Designing- Huffman Encoding technique for designing instruction sets Control Unit - Hardwired and Microprogrammed Approach - Firmware -Coprocessor

> M.Bhirathi

Signature of BOS Chairperson, ECE

Memory \& Pipelining
9 Hours
Types of Memory - Memory Hierarchy - ROM \& ROM Types - Cache Memories -Performance Considerations - Virtual Memories - MMU \& MPU - Secondary Storage - Introduction to Pipelining - Advantage - Data Hazards - Instruction Hazards - Influence of Instructions sets Datapath and Control Considerations

Architectural Support for System Development

9 hours
ARM memory interface - Advanced Microcontroller Bus Architecture (AMBA) - ARM reference peripheral specification - Hardware system prototyping tools - ARMulator-JTAG boundary scan test architecture- ARM debug architecture.

REFERENCES

1. ARM System-on-Chip Architecture, Steve Furber, Addison-Wesley Educational Publishers Inc; $2^{\text {nd }}$ Edition, 2020.
2. Modern Computer Architecture, Rafiquzzman, Galgotia Publications Pvt Ltd, 1990.
3. Computer Organization, Hamacher, $5^{\text {th }}$ Edition, McGraw Hill Education, 2011.
4. ARM Assembly Language Programming \& Architecture, Muhammad Ali Mazidi, Microdigitaled.com; $2^{\text {nd }}$ Edition, 2016.

LABORATORY COMPONENT

- ARM7 Assembly code using Keil.
- Algorithm implementation using C (algorithms) any GCC/ IDEs based on GCC.

LIST OF EXPERIMENTS

Assembly Language Programming

1. Working with arithmetic and logical instructions
2. Number conversion
3. Sorting operation
4. Subroutine

C/C++ programming

1. Basic $\mathrm{C} / \mathrm{C}++$ operator used in Digital logic.
2. $\mathrm{C} / \mathrm{C}++$ program to implement half adder.
3. $\mathrm{C} / \mathrm{C}++$ program to implement full adder.
4. Shifting operations using C programming.
5. C/C++ Program to implement Booth's Multiplication Algorithm
6. $\mathrm{C} / \mathrm{C}++$ Program to implement Recursive Division Algorithm

References

1. ARM: Assembly Language Programming, Stephen Welsh, Peter Knaggs, 2003.
2. Let Us C, Yashavant Kanetkar, BPB Publications, $15^{\text {th }}$ Edition, 2016.

SEMESTER VI

M.Blurathi

U18ECI6201

 COMMUNICATION ENGINEERING- II| \mathbf{L} | \mathbf{T} | \mathbf{P} | \mathbf{J} | \mathbf{C} |
| :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 2 | 0 | 4 |

Course Outcomes (COs):

After successful completion of this course, the students should be able to
C01: Demonstrate digital communication system and estimation techniques used in the receiver (K2,S3).
CO2: Apply and verify source coding techniques (K4,S3).
CO3: Apply and analyze channel coding techniques for data transmission (K4,S3).
CO4: Examine the interference effects in band limited communication systems (K4,S3).
CO5: Compare and implement the performance of various digital modulation techniques ($\mathrm{K} 4, \mathrm{~S} 3$).
CO6: Describe various synchronization techniques (K2).

Pre-requisites:

1.U18ECI5201-Communication Engineering- I

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		S												S
CO2		S	M		S				S					S
CO3		S	M		S				S					S
CO4		S	M						S					S
CO5		S	M		S				S					S
CO6		S												S

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II (Theory Component)
Assignment (Theory Component)
Pre/Post - experiment Test/Viva; Experimental Report for each experiment (Lab component)
Model examination (lab component)
End Semester Examination (Theory and lab component)
INDIRECT
Course-end survey

M.Bhurathi

Signature of BOS Chairperson, ECE

INTRODUCTION

09 Hours
Block diagram of Digital Communication System - AWGN channel models: Wave form and vector channel models. Gram-Schmidt Orthogonalization Procedure- Geometric interpretation of signalsMaximum Likelihood detector - Probability of error-Correlation receiver, Matched Filter Receiver.

INFORMATION THEORY AND SOURCE CODING

09 Hours
Uncertainty, Information and entropy, Source coding theorem, Data compaction: Shannon- Fano coding, Huffman coding, Discrete Memory less Channel, Mutual Information, Channel capacity, Channel coding theorem, Differential entropy and mutual information for continuous ensembles, Information capacity theorem, Implication of the information capacity theorem.

ERROR CONTROL CODING

09 Hours
Linear block codes - Cyclic codes- Convolutional codes -Viterbi Algorithm.

BAND LIMITED SIGNALING SCHEMES

06 Hours
Inter-symbol Interference- Nyquist Criterion for distortion less Baseband Binary Transmission-Correlative coding-Eye patterns- Equalization - Adaptive Equalization.

DIGITAL MODULATION TECHNIQUES
09 Hours
Signaling scheme, Generation, Detection, Probability of error and Power Spectral Density of Coherent Modulation Techniques: BPSK-BFSK-QPSK- MSK- Non Coherent Binary Modulation Techniques: FSKDifferential phase shift keying - Introduction to M-ary signaling.

SYNCHRONIZATION

03 Hours
Carrier synchronization- $\mathrm{M}^{\text {th }}$ Powerloop - Costas loop-Symbol Synchronization-Early Late gate type.

REFERENCES:

1. Simon Haykin, "Digital Communication Systems", John Wiley\& Sons, 2013.
2. Bernard Sklar, "Digital Communication, Fundamentals and Applications" Pearson Education Asia, Second Edition, reprint, 2002.
3. John G. Proakis, "Digital Communication" McGraw Hill 4 Edition, 2008
4. Herbert Taub, Donald L Schilling and Goutam Saha, "Principles of Communication S ystems", McGraw Hill, Fourth Edition, 2013.
5. B.P.Lathi, Zhi Ding. "Modern Digital and Analog Communication Systems", Oxford University Press, F ourth Edition, 2009.
6. Ferrel G. Stremler, " Introduction to Communication Systems", Prentice-Hall, $4^{\text {th }}$ Edition, 2001.

> Miblurathi

Signature of BOS Chairperson, ECE

LAB COMPONENT:

LIST OF EXPERIMENTS

I Implementation and Simulation analysis of

1. Digital modulation schemes
2. Block codes and Cycliccodes
3. Radiation pattern of Antennas
4. Source coding algorithms.
5. Convolutional codes.
6. Channel Equalizers.

II Analysis of pass band signals using Vector Signal Generator, Vector Signal Analyzer and Spectrum Analyzer.

Theory: 45
Tutorial: $\mathbf{0} \quad$ Practical: $\mathbf{3 0}$
Project: 0
Total: 75 Hours
M.Blurathi

Signature of BOS Chairperson, ECE

U18ECI6203

VLSI AND HDL PROGRAMMING

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	2	0	4

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Implement and verify combinational and sequential circuits using Verilog HDL(K3,S4)
CO2: Explain working and electrical properties of MOSFET (K2)
CO3: Discuss the CMOS fabrication Technologies (K2)
CO4: Apply CMOS logics in complex digital circuits(K3)
CO5: Discuss various implementation strategies (K2)

Pre-requisites:

1. U18ECI3203-Digital System Design

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
Cos	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	M	M											S	
CO2	S	M	W		W								S	
CO3	S	M	S		W								S	
CO4	M	M	S		S								S	
C05	M	M	M		S								S	

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II
Assignment
End Semester Examination
INDIRECT
Course-end survey

VERILOG HDL

09 Hours
VLSI Circuit Design Flow-Hierarchical modeling concepts - Basic concepts: Lexical conventions - Datatypes - Modules and ports. Gate level modeling - Dataflow modeling - Behavioral modeling - Design examples of Combinational and Sequential circuits - Switch level modeling - Tasks and Functions - UDP concepts.

MOS CIRCUIT DESIGN PROCESS

Introduction of MOSFET: Symbols, Enhancement mode-Depletion mode transistor operation - Threshold voltage derivation - Drain current Vs voltage derivation - Second order Effects. NMOS and CMOS inverter - Determination of pull up to pull down ratio.

Chip Design Hierarchy - IC Layers - Photolithography and Pattern Transfers - Basic MOS Transistors CMOS Fabrication: n-well - p-well - twin tub - Latch up and prevention (SOI) -BiCMOS technologySubmicron CMOS Process - CMOS Design Rules: Lambda based design rules-Stick diagrams-Masks and Layout

CMOS LOGIC GATES \& OTHER COMPLEX CIRCUITS

10 Hours
CMOS Static Logic - Transmission Gate Logic - Tri-State Logic - Pass Transistor Logic - Dynamic CMOS Logic - Domino CMOS Logic, NORA CMOS Logic, Differential Cascade Voltage Switch (DCVS) Logic, True Single Phase Clock (TSPC) Dynamic Logic. Arithmetic Circuits - Design of Adders: -carry select-carry save. Design of multipliers: Array multipliers.

VLSI IMPLEMENTATION STRATEGIES

08 Hours

Introduction to FPGA-FPGA Design Flow- FPGA architecture- FPGA Devices- Xilinx 4000 series. Introduction to SoC : Driving Forces for SoC - Components of SoC - Design flow of SoC Hardware/Software nature of SoC - Design Trade-offs - SoC Applications.

REFERENCES:

1. Douglas A. Pucknell, "Basic VLSI Systems and Circuits", Prentice Hall of India, $3{ }^{\text {rd }}$ Edition, reprint 2008.
2. Michael J Flynn and Wayne Luk, "Computer system Design: System-on-Chip", Wiley-India,
3. Samir Palnitkar, "Verilog HDL - Guide to Digital Design and Synthesis", Pearson Education, 3 rd Edition, 2003.
4. John P. Uyemura, "Introduction to VLSI Circuits and Systems", John Wiley \& Sons, Reprint 2009
5. Weste\&Eshraghian, "Principles of CMOS VLSI Design", Addison Wesley, $2^{\text {nd }}$ Edition, 2008.
6. John P Uyemura, "Chip Design for Submicron VLSI: CMOS layout and simulation", Thomson India Edition, 2010.
7. Wayne Wolf, "FPGA-Based System Design", First Edition, Prentice Hall India Private Limited, 2004.

LAB COMPONENT:

LIST OF EXPERIMENTS:

I Design and Simulation using HDL

1. Combinational logic circuits.
2. Sequential logic circuits.
3. VLSI multipliers.
4. Memory
5. FSM

II Implementation using Xilinx FPGA

1. FPGA Implementation of any two combinational and sequential circuits

III System design using IP core generator
IV Layout generation for VLSI circuits using backend tools.
Theory: 45 Tutorial: $\mathbf{0} \quad$ Practical: $\mathbf{3 0} \quad$ Project: $\mathbf{0} \quad$ Total: $\mathbf{7 5}$ Hour
M.Blurathi

Signature of BOS Chairperson, ECE

U18ECI6204	MICROCONTROLLER AND ITS	L	T	P	J	C
	APPLICATIONS	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{3}$

Course Outcomes

After successful completion of this course, the students should be able to

CO1: Explain the CORTEX M microcontroller with the concepts of embedded systems (K2)
CO2: Illustrate applications with CORTEX M based microcontroller using GPIO programming. (K2)
CO3: Explain the interfacing, bus protocols and their application with case studies involved in embedded system design. (K2)

Pre-requisite

U18ECI5206 - Embedded Processor Architecture

							PO	appi						
		/M/W	indi	tes s	ength	of con	latio		,	M-	dium,	-Wea		
COs						Prog	mme	Outco	nes (
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	L													
CO 2			M		S									S
CO3			M	M	S									S

Course Assessment methods:

Direct		
1.	Continuous Assessment Test I, II	Course end survey
2. Written Assignment		
3. Quiz		
4.	End Semester Examination	

Introduction to Embedded Systems

10 Hours
Design Challenges- Processors Technology - Design Technology- Introduction to ARM Cortex processor - Variants of Cortex and ARM versions - Comparison of M-series processor Architecture - Programmers Model - APSR register - Memory Model - Exception - Interrupts Reset - Memory Map - Bit banding and Bit Band Aliasing

Introduction to ARM Cortex processor
10 Hours
More on Memory System - Exceptions and Interrupts - NVIC - Memory Protection Unit Embedded C programming - Cortex Microcontroller System Interface (CMSIS) - Startup Code

Introduction to Cortex M Microcontroller
10 Hours
Memory Mapping - Registers involved and programming with GPIO - GPIO interfacing - LCD, LED, 7 - Segment, Stepper Motor, Keypad. Peripherals of Cortex M Microcontroller: PLL, Timer, UART, ADC, DAC.

Bus Architecture: Inter Integrated Circuit Bus (I2C), Serial Peripheral Interface (SPI)
Case Study: Digital Camera Design, Elevator design.

M.Bhrathi

Signature of BOS Chairperson, ECE

REFERENCES

1. The definitive guide to the ARM Cortex-M3, Joseph Yiu, $2^{\text {nd }}$ Edition, Elsevier, 2010.
2. TI Tiva ARM Programming for Embedded Systems: Programming ARM Cortex-M4 TM4C123G with C, Mazidi \& Naimi, ARM Series, 2017.
3. User Manual of Microcontroller
4. LPCzone Examples

LABORATORY COMPONENT

Embedded C applications using Keil / Energeia IDE for CORTEX M4 based microcontroller boards.

LIST OF EXPERIMENTS

1. Basic Arithmetic and Logical operations using CORTEX M4 microcontroller.
2. Square wave Generation using TIMER.
3. Serial Communication using UART.
4. LED interfacing with CORTEX M4 microcontroller
5. LCD interfacing with CORTEX M4 microcontroller
6. 7-Segment interfacing with CORTEX M4 microcontroller
7. Stepper Motor interfacing with CORTEX M4 microcontroller
8. Keypad interfacing with CORTEX M4 microcontroller
9. Sensor interfacing with CORTEX M4 microcontroller

Theory: $\mathbf{3 0} \quad$ Tutorial: $0 \quad$ Practical: $\mathbf{3 0}$
Project: 0
Total: 60 Hours

SEMESTER VII

U18ECP7701	PROJECT PHASE I	L	T	P	J	C
	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{6}$	$\mathbf{3}$	

Course Outcomes

After successful completion of this course, the students should be able to	
CO1: Identify the problem by applying acquired knowledge.	K 5
CO2: Develop sustainable solutions ethically after considering the environmental issues.	K 4
CO3: Choose appropriate hardware and software tools for designing and testing the project modules.	K 4
CO4: Estimate the time frame and cost for the project.	K 4
CO5: Evaluate and Elaborate on the completed task and compile the project report in a team.	K 5

Pre-requisite

All the courses

Course Assessment methods

Direct	Indirect
1. Project Review	1. Course-end survey
2. \quad End Semester Viva Voce Examination	2. Programme Exit survey
	3. Placement/Higher education record
	4. Feedback (Students, Employers, Parents, Alumni)

M.Bhurathi

Signature of BOS Chairperson, ECE

U18ECT7002

WIRELESS COMMUNICATION

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Compare various Wireless communication standards (K4).
CO2: Analyze different propagation models (K4).
CO3: Illustrate cellular communication techniques (K4).
CO4: Analyze modulation schemes used in wireless standards (K4).
CO5: Compare diversity techniques in wireless communication (K4).
CO6: Distinguish different MIMO techniques (K3).

Pre-requisites:

1.U18ECI6201-Communication Engineering II

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	P010	PO11	PO12	PSO1	PSO2
CO1	S	M												S
CO2	S	M												S
CO3	S	M												S
CO4	S	M												S
C05	S	M												S
CO6	S	M												S

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II
Assignment
End Semester Examination
INDIRECT
Course-end survey

INTRODUCTION

Introduction to wireless communication systems- Evolution of mobile communication system- 2G, 3G, 4G, UMTS, LTE, WLL, WLAN, WPAN, Bluetooth, Ultra wide band.

Large scale path loss - Path loss models: Free Space and Two-Ray models -Link Budget design - Small scale fading- Parameters of mobile multipath channels - Time dispersion parameters - Coherence bandwidth - Doppler spread \& Coherence time, fading due to Multipath time delay spread - flat fading frequency selective fading - Fading due to Doppler spread - fast fading - slow fading.

CELLULAR COMMUNICATION

10 Hours
Introduction, Frequency reuse, Cell Assignment techniques, Hand off Strategies, Interference and System Capacity, trunking and Grade of Service, Improving Coverage and capacity in cellular systems. Multiple Access techniques: FDMA, TDMA, CDMA, SDMA.

SIGNAL PROCESSING FOR WIRELESS COMMUNICATION
12 Hours
Modulation techniques: M-QAM, M-PSK, GMSK - Spread Spectrum Systems: PN sequence- m-sequenceDirect Sequence Spread Spectrum-Frequency Hopping Spread Spectrum, Synchronization techniques for Spread Spectrum signals - Diversity and Combining Techniques: Time Diversity, Frequency diversity, Space Diversitycombining techniques-Selection combining, Equal gain combining, Maximum ratio Combining - RAKE receiver- Multi carrier system-OFDM.

MULTIPLE ANTENNA TECHNIQUES
09 Hours
MIMO systems - spatial multiplexing -System model -Pre-coding - Beam forming - Space Time Coding, Alamouti scheme - Channel State Information-capacity in fading and non-fading channels.

Theory: 45	Tutorial: 0	Practical: 0	Project: 0	Total: 45 Hours

REFERENCES:

1. T.S. Rappaport, "Wireless Communications: Principles and Practices", Second Edition, Prentice Hall of India, 2014.
2. Andrea Goldsmith, "Wireless Communications", Cambridge University Press, 2008.
3. John G. Proakis, "Digital Communication" McGraw Hill, Fourth Edition, 2008
4. Andreas.F. Molisch, "Wireless Communications", John Wiley, India, 2006.
5. KamiloFeher, "Wireless Digital Communications", First Edition, Pearson, 2006.
6. William C Lee," Wireless and Cellular Communications" Third Edition McGraw Hill, 2006.
7. Jochen Schiller," Mobile Communication", Second edition, Addison-Wesley, 2003.

M.Bhirathi

Signature of BOS Chairperson, ECE

U18ECI7203

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	2	0	4

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Discuss optical fiber communication link structure, characteristics of fiber and fabrication techniques (K2).
CO2: Measure and analyze the propagation characteristics of an optical signal in different types of fibers (K4).
CO3: Analyze the characteristics of different optical sources (K3).
CO4: Inspect the optical receivers and amplifiers of an optical transmission system (K3).
CO5: Analyze optical fiber transmission system(K4).
CO6: Outline basic optical network concepts and components involved (K2).

Pre-requisites: -

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO1		S							S					M
CO2	S	M	M						S					S
CO3		S	M						S					S
CO4		S	M						S					S
CO5		S	M						S					M
CO6		S	M						S					M

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II (Theory Component)
Assignment (Theory Component)
Pre/Post - experiment Test/Viva; Experimental Report for each experiment (Lab component)
Model examination (Lab component)
End Semester Examination (Theory and Lab component)
INDIRECT
Course-end survey

M.Bhurathi

Signature of BOS Chairperson, ECE

THEORY COMPONENT CONTENT:

INTRODUCTION TO OPTICAL FIBERS

08 Hours
Introduction to Optical Communication - key elements of an Optical Fiber system-Ray Optics-Optical Fiber Modes and Configurations-Overview of Modes-Power flow in Step index fibers- Single Mode Fibers - Graded Index fibers- Optical fiber fabrication techniques - Passive optical components - Optical couplers and isolators.

SIGNAL DEGRADATION IN OPTICAL FIBERS
11 Hours
Attenuation-Core and Cladding losses, Signal Distortion in Optical Fibers-Information Capacity determination - Group Delay-Material Dispersion-Waveguide Dispersion- Signal distortion in Single Mode fibers Polarization Mode dispersion, Design optimization of Single Mode fibers, special fibers.

FIBER OPTICAL SOURCES
10 Hours
Direct and indirect Band gap materials -LED structures -Light source materials-Quantum efficiency and LED power- Modulation of LED, laser Diodes-Modes and Threshold condition-External modulation- Quantum-well laser, Laser sources for free space communication.

FIBER OPTICAL RECEIVERS AND AMPLIFIERS

08 Hours
PIN- avalanche photodiode (APD), Photodetector noise-SNR, Avalanche Multiplication Noise - Fundamental Receiver Operation -digital receiver performance - probability of error- quantum limit, Receiver sensitivity, Optical amplifier -erbium-doped fiber amplifier (EDFA).

OPTICAL TRANSMISSION SYSTEM AND NETWORK

08 Hours

Point-to-Point links- system considerations-Link Power budget - Rise time budget, Networking Concepts: SONET/SDH optical networks, WDM optical networks, layered optical network architecture.

REFERENCES:

1. Gerd Keiser, "Optical Fiber Communications" Tata McGraw-Hill education private Limited, NewDelhi, fifth Edition, 2013.
2. Rajiv Ramaswami and Kumar.N.Sivarajan, "Optical networks: A practical perspective", Morgan Kaufmann, Third Edition, 2009.
3. J.Senior, "Optical Communication Principles and Practice", Prentice Hall of India, third Edition,2004.
4. J. Gower, "Optical Communication System", Prentice Hall of India, 2001.
5. Yarvi. A. "Quantum Eletronics", JohnWiley, 4 ${ }^{\text {th }}$ edition, 1995.
6. Max Ming-Kang Liu, "Principles and applications of Optical communications" Tata McGraw Hill, 1996.

M.Bhurathi

Signature of BOS Chairperson, ECE

LAB COMPONENT CONTENT:

LIST OF EXPERIMENTS

Measurement/ Simulation Analysis of

1. Numerical Aperture.
2. Attenuation coefficient and bending losses of optical fiber.
3. LED characteristics.
4. Pin Photo Diode characteristics.
5. APD characteristics.
6. Laser diode characteristics.
7. Analog communication link over Fiber optic cables.
8. Digital communication link over Fiber optic cables.
9. Loss characteristics of optical components using OTDR.
10. Single mode and multimode fibers.
11. Wavelength Division Multiplexing and De-multiplexing
12. Fiber optic link design - power and rise-time budget
Theory: 45 Tutorial: $0 \quad$ Practical: $30 \quad$ Project: $0 \quad$ Total: 75 Hours
M.Blurathi

Signature of BOS Chairperson, ECE

U18ECI7204

RF AND MICROWAVE ENGINEERING

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	2	0	4

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Implement and analyze various two port RF networks (K4, S3).
CO2: Design and analyze RF transistor amplifiers (K4, S3).
CO3: Measure and analyze the characteristics of active and passive microwave devices (K3,S3).
CO4: Analyze various Microwave tubes (K4).
CO5: Measure the parameters like VSWR, impedance, frequency, power of microwave sources and loads (K3,S3).

Pre-requisites:

1.U18ECT4104- Transmission Lines and Waveguides

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		S	M						S					M
CO2		S							S					M
CO 3	S	M							S					M
CO4		S	M						S					M
CO5	S	M							S					M

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II (Theory Component)
Assignment (Theory Component)
Pre/Post - experiment Test/Viva; Experimental Report for each experiment (Lab component)
Model examination (lab component)
End Semester Examination (Theory and lab component)
INDIRECT
Course-end survey

TWO PORT RF NETWORKS

Microwave Frequency Bands, S Parameters -Formulation of S Parameters, Properties of S Parameters, Reciprocal and Lossless Network, RF behaviour of Resistors, Capacitors and Inductors, Chip Components and Circuit Board considerations

RF IMPEDANCE MATCHING NETWORKS

Importance of impedance matching, Components for matching, Design of Matching Networks - Matching network design using Lumped elements- RC, RL, RLC circuits, Design of Matching Networks using Distributed Elements- Transmission lines, Microstrip lines, Stubs.

M.Bhirathi

Signature of BOS Chairperson, ECE

PASSIVE AND ACTIVE MICROWAVE DEVICES

09 Hours
Terminations, Attenuators, Phase Shifters, Directional Couplers, Microwave Hybrid Circuits, Power Dividers, Circulator, Isolator, PIN Diode Switch, Gunn Diode Oscillator, IMPATT-TRAPATT-BARITT Diodes, Varactor Diode-Introduction to Microwave Integrated Circuits.

MICROWAVE TUBES

09 Hours
Klystrons- Re-entrant Cavities-Velocity Modulation Process- Bunching Process- Output Power and Beam Loading- Reflex Klystrons- Velocity Modulation- Power Output and Efficiency- Electronic Admittance, Helix Travelling-Wave Tubes (TWTs) -Microwave Crossed-Field Tubes - Cylindrical Magnetron.

MICROWAVE MEASUREMENTS

09 Hours
Measuring Instruments: VSWR Meter, Power Meter, Spectrum Analyzer, Network Analyzer - Measurement of Impedance, Frequency, Power, VSWR.

REFERENCES:

1. Reinhold Ludwig And Gene Bogdanov, "RF Circuit Design: Theory and Applications", Pearson Education Inc., 2013.
2. Samuel Y.Liao, "Microwave Devices and Circuits", Prentice Hall of India, Third Edition, 2003.
3. Annapurna Das And Sisir K Das, "Microwave Engineering", Tata McGraw Hill Publishing Company Ltd, New Delhi, 2009.
4. David M. Pozar, "Microwave Engineering", Wiley India (P) Ltd, New Delhi, 2008.
5. Thomas H Lee, "Planar Microwave Engineering: A Practical Guide to Theory, Measurements And Circuits", Cambridge University Press, 2004.
6. Mathew M Radmanesh, "RF And Microwave Electronics", Prentice Hall, 2000.

LAB COMPONENT:
 LIST OF EXPERIMENTS:

1. Design and Analysis of RF impedance matching network.
2. Microwave S-Parameter measurement using Network Analyser.
3. Reflex Klystron Characteristics.
4. Guide wavelength, source frequency and terminated impedance of a Microwave Device.
5. Gunn Diode Characteristics
6. Directional Coupler Characteristics
7. Magic Tee Characteristics
8. Radiation Pattern of Microwave Antenna.
Theory: 45 Tutorial: $0 \quad$ Practical: $30 \quad$ Project: $0 \quad$ Total: 75 Hours
M.Bhurathi

Signature of BOS Chairperson, ECE

SEMESTER VIII

M.Blurathi

Signature of BOS Chairperson, ECE

U18ECP8701	PROJECT PHASE II	L	T	P	J	C
	0	0	0	24	12	

Course Outcomes

After successful completion of this course, the students should be able to	
CO1: Identify the problem by applying acquired knowledge.	K5
CO2: Develop sustainable solutions ethically after considering the environmental issues.	K4
CO3: Choose appropriate hardware and software tools for designing and testing the project modules.	K4
CO4: Estimate the time frame and cost for the project.	K4
CO5: Evaluate and Elaborate on the completed task and compile the project report in a team.	K5

Pre-requisite

All the courses

CO/PO Mapping														
COs	Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	P05	PO6	PO7	PO8	PO9	PO10	$\begin{array}{\|c} \hline \text { PO } \\ 11 \end{array}$	PO12	PSO1	PSO2
CO1	S	S	S	S		S	S	S	S		S	S	S	S
CO2		S	S	S		S	S	S	S		S	S	S	S
CO3	S	S	S	S	S	S	S	S	S		M	S	S	S
CO4	M	M	M	M	M	M	S		S		S	S	S	S
CO5				S		S			S	S		S	S	S

Course Assessment methods

Direct	Indirect
1. Project Review	1. Course-end survey
2. \quad End Semester Viva Voce Examination	2. Programme Exit survey
	3. Placement/Higher education record
	4. Feedback (Students, Employers, Parents, and Alumni)

M.Bhrathi

Signature of BOS Chairperson, ECE

PROFESSIONAL ELECTIVES

M.Blurathi

COMMUNICATION SYSTEM

M.Blurathi

U18ECE0001

COGNITIVE RADIO

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Explain the principles of the software defined radio (K2).
CO2: Describe the architecture of software defined radio (K2).
CO3: Explain the design considerations of cognitive radio (K2).
CO4: Illustrate cognitive radio architecture (K2).
CO5: Demonstrate knowledge of spectrum sensing (K2).
CO6: Apply cross-layer design for cognitive radio (K3).

Pre-requisites:

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO 2	S				W									S
CO 3	S			M	W									S
CO 4	S			W										S
CO5	S				M									S
CO6	S			M										S

Course Assessment Methods

DIRECT

Continuous Assessment Test I, II
Assignment
End Semester Examination
INDIRECT
Course-end survey
INTRODUCTION TO SOFTWARE DEFINED RADIO
09 Hours
Definitions and potential benefits, software radio architecture evolution - foundations, technology tradeoffs and architecture implications.

M.Bhurathi

SDR ARCHITECTURE

09 Hours
Essential functions of the software radio, architecture goals, quantifying degrees of programmability, top level component topology, computational properties of functional components, interface topologies among plug and play modules, architecture partitions.

INTRODUCTION TO COGNITIVE RADIOS

09 Hours
Marking radio self-aware, the cognition cycle, organization of cognition tasks, structuring knowledge for cognition tasks, Enabling location and environment awareness in cognitive radios - concepts, architecture, design considerations.

COGNITIVE RADIO ARCHITECTURE

09 Hours

Primary Cognitive Radio functions, Behaviors, Components, A-Priori Knowledge taxonomy, observe - phase data structures, Radio procedure knowledge encapsulation, components of orient, plan, decide phases, act phase knowledge representation, design rules.

NEXT GENERATION WIRELESS NETWORKS

09 Hours
The XG Network architecture, spectrum sensing, spectrum management, spectrum mobility, spectrum sharing, upper layer issues, cross - layer design.

Theory: 45 Tutorial: $0 \quad$ Practical: $0 \quad$ Project: $0 \quad$ Total: 45 Hours

REFERENCES

1. Qusay. H. Mahmoud, "Cognitive Networks: Towards Self Aware Network", John Wiley \& Sons Ltd. 2007.
2. Markus Dillinger, KambizMadani, Nancy Alonistioti, "Software Defined Radio", John Wiley, 2003.
3. HuseyinArslan, "Cognitive Radio, SDR and Adaptive System", Springer, 2007.
4. Joseph Mitola, "Cognitive Radio Architecture", John Wiley \& Sons, 2006.
5. Alexander M. Wyglinski, Maziarnekovee, Y. Thomas Hu, "Cognitive Radio Communication and Networks", Elsevier, 2010.
6. J. Mitola, "The Software Radio Architecture", IEEE Communications Magazine, May 1995.
7. Joseph Mitola III and Gerald Q. Maquire, "Cognitive radio: making software radios more personal", IEEE Personal Communications, August 1999.
8. J. Mitola, "Cognitive Radio: An Integrated Agent Architecture for software defined radio", Doctor of Technology thesis, Royal Inst. Technology, Sweden 2000.
9. Simon Haykin, "Cognitive Radio: Brain -empowered wireless communications", IEEE Journal on selected areas in communications, Feb 2005.
10. HasariCelebi, HuseyinArslan, "Enabling location and environment awareness in cognitive radios", Elsevier Computer Communications, Jan 2008.
11. Ian F. Akyildiz, Won - Yeol Lee, Mehmet C. Vuran, ShantidevMohanty, "Next generation / dynamic spectrum access / cognitive radio wireless networks: A Survey" Elsevier Computer Networks, May 2006.

U18ECE0002

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to

CO1: Discuss orbital mechanics and launch methodologies (K2).
CO2: Describe various space subsystems (K2).
CO3: Explain different subsystems of earth segment (K2).
CO4: Apply signal processing for satellite communication (K2).
CO5: Design and analyze link power budget for satellites (K4).
CO6: Describe various Satellite Applications (K2).

Pre-requisites:

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	M												M
CO 2	S	M												M
CO3	S													M
CO4		S		M										M
CO5		S	M											S
CO6		S												M

Course Assessment Methods

DIRECT

Continuous Assessment Test I, II
Assignment
End Semester Examination

INDIRECT

Course-end survey

SATELLITE ORBITS

09 Hours
Introduction - Spectrum allocations for satellite systems -Kepler's Laws - orbital parameters - orbital perturbations - station keeping - Type of orbits - Geo stationary orbits - look angle determination- limits of visibility - eclipse -sub satellite point - sun transit outage - launching procedures - launch vehicles and propulsion.

M.Bhrathi

Signature of BOS Chairperson, ECE

SPACE AND EARTH SEGMENT
09 Hours
Spacecraft technology- structure- power supply- attitude and orbit control - thermal control and propulsion communication subsystems - telemetry, tracking and command - Transponders-Antenna subsystem, Equipment reliability.
Earth station technology -Receive only home TV systems - MATV - CATV - Transmit Receive Earth Stations.

SATELLITE ACCESS

09 Hours

Modulation and Multiplexing-Voice, Data, Video, Analog - digital transmission system-Digital video broadcast - multiple access: FDMA, TDMA, CDMA- assignment methods -spread spectrum communication -compression - encryption.

SATELLITE LINK DESIGN

09 Hours
Introduction- Equivalent isotropic radiated power -Transmission Losses - Link power budget equation - System Noise, Carrier to Noise ratio - uplink - downlink - effects of rain - combined uplink and downlink C/N ratio inter modulation noise - Interference between satellite circuits.

SATELLITE APPLICATIONS

09 Hours
Satellite mobile services - VSAT- Radarsat- GPS- Orbcomm-iridium- Direct Broadcast satellites (DBS) - Direct to home Broadcast (DTH) -Digital audio broadcast (DAB) - World space services, Business TV (BTV)

- GRAMSAT - Specialized services: E mail, Video conferencing, Internet- INTELSAT Series- INSAT INMARSAT.

Theory: 45

Tutorial: 0
Practical: 0
Project: 0
Total: 45 Hours

REFERENCES:

1. Dennis Roddy, 'Satellite Communication’, McGraw Hill International, $4^{\text {th }}$ Edition, 2006.
2. Timothy Pratt, Charles Bostian \& Jeremy Allmuti, "Satellite Communications", John Wiley \& Sons. Second edition 2008.
3. N.Agarwal, "Design of Geosynchronous Space Craft", Prentice Hall, 1986.
4. Bruce R. Elbert, "The Satellite Communication Applications" Hand Book, Artech House Bostan London, second edition 2004.
5. Tri T. Ha, "Digital Satellite Communication", II edition, 1990.
6. Emanuel Fthenakis, "Manual of Satellite Communications", McGraw Hill Book Co., 1984.
7. Robert G. Winch, "Telecommunication Transmission Systems", McGraw-Hill Book Co., second edition 1998.

M.Bhurathi

Signature of BOS Chairperson, ECE

U18ECE0003

MIMO SYSTEMS

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Describe point-to-point communication techniques that increase reliability by exploiting time, frequency and spatial diversity (K2).
CO2: Analyze the performance of Wireless channel and MIMO channel models (K3).
CO3: Describe Spatial Multiplexing, Space Time coding (K2).
CO4: Explain diversity-multiplexing tradeoff and space-time code design (K2).
CO5: Discuss MIMO in multiuser communication (K2).

Pre-requisites:

1. U18EC T7002 Wireless Communication

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO1		S	M	M										S
CO2		S	M	S										S
CO3	S	M	M											M
CO4	S	M	M											M
CO5	S	M	M											M

Course Assessment Methods

DIRECT

Continuous Assessment Test I, II
Assignment
End Semester Examination
INDIRECT
Course-end survey

POINT-TO-POINT COMMUNICATION:
 DETECTION, DIVERSITY AND CHANNEL UNCERTAINTY

09 Hours

Detection in a Rayleigh Fading Channel - Time Diversity- Antenna Diversity - Frequency Diversity - Impact of Channel Uncertainty

SPATIAL MULTIPLEXING AND CHANNEL MODELING
09 Hours
Multiplexing Capability of Deterministic MIMO Channels- Physical Modeling of MIMO ChannelsModeling of MIMO Fading Channels

CAPACITY AND MULTIPLEXING ARCHITECTURES

09 Hours
The V-BLAST Architecture- Fast Fading MIMO Channel- Receiver Architectures- Slow Fading MIMO Channel - D-BLAST: An Outage-Optimal Architecture

DIVERSITY-MULTIPLEXING TRADEOFF AND UNIVERSAL SPACE-TIME CODES

09 Hours

Diversity - Multiplexing Tradeoff - Universal Code Design for Optimal Diversity - Multiplexing Tradeoff
MULTIUSER COMMUNICATION
09 Hours
Uplink with Multiple Receive Antennas - MIMO Uplink - Downlink with Multiple Transmit Antennas MIMO Downlink

> | Theory: 45 | Tutorial: 0 | Practical: 0 | Project: 0 | Total: 45 Hours |
| :--- | :--- | :--- | :--- | :--- |

REFERENCES:

1. David Tse and PramodViswanath, "Fundamentals of Wireless Communication", Cambridge University Press, 2004.
2. A. Paulraj, RohitNabar, Dhananjay Gore., "Introduction to Space Time Wireless Communication Systems", Cambridge University Press, 2003
3. Sergio Verdu "Multi User Detection" Cambridge University Press, 1998

> M.Bhrathi

Signature of BOS Chairperson, ECE

ADVANCED WIRELESS COMMUNICATION

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Analyze various wireless channel models (K4).
CO2: Analyze the performance of digital modulation schemes over wireless channel (K4).
CO3: Describe multicarrier modulation technique (K3).
CO4: Explain cooperative communication techniques (K2).
CO5: Discuss green wireless communication technology (K2).
CO6: Explain Millimeter wave communication (K2).

Pre-requisites:

1.U18ECT7002 Wireless Communication

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		S	M	M										S
CO2		S	M	S										S
CO3	S	M	M											M
CO4	S	M	M											M
CO5	S	M	M											M
CO6	S	M	M											M

Course Assessment Methods

DIRECT

Continuous Assessment Test I, II
Assignment
End Semester Examination

INDIRECT
 Course-end survey

WIRELESS CHANNEL MODELS

Overview of wireless systems - path loss model for wireless channels - Time and Frequency coherence Statistical multipath channel models - Capacity of wireless Channel -Capacity of Flat Fading Channel Channel Distribution Information known - Channel Side Information at Receiver - Channel Side Information at Transmitter and Receiver -Capacity with Receiver diversity - Capacity comparisons - Capacity of Frequency Selective Fading channels.

M.Bhurathi

Signature of BOS Chairperson, ECE

DIGITAL MODULATION AND DIVERSITY TECHNIQUES
09 Hours
Performance of Digital Modulation over Wireless Channel-Fading- Outage Probability- Average Probability of Error - Combined Outage and Average Error Probability.

MULTICARRIER MODULATION

09 Hours
Data Transmission using Multiple Carriers - Multicarrier Modulation with Overlapping Subchannels Mitigation of Subcarrier Fading - Discrete Implementation of Multicarrier Modulation - Peak to average Power Ratio- Frequency and Timing offset - OFDM, MC CDMA.

COOPERATIVE COMMUNICATIONS AND GREEN CONCEPTS

09 Hours
Network architectures and research issues in cooperative cellular wireless networks - Cooperative communications in OFDM and MIMO cellular relay networks: issues and approaches - Fundamental trade- offs on the design of green radio networks, Green modulation and coding schemes, Cooperative techniques for energy efficiency

INTRODUCTION TO MULTI-GIGABIT
09 Hours
$60-\mathrm{GHz}$ MILLIMETER WAVE RADIOS -Millimeter wave characteristics - Channel performance at 60 GHz , Gigabit wireless communication, Standards- Wi-Gig, IEEE 802.11ad, IEEE 802.15.3c- Millimeter wave applications.

Theory: 45 Tutorial: $0 \quad$ Practical: $0 \quad$ Project: $0 \quad$ Total: $\mathbf{4 5}$ Hours

REFERENCES:

1. Andrea Goldsmith, "Wireless Communications", Cambridge University Press, 2005
2. Ekram Hossain, Dong In Kim, Vijay K. Bhargava, "Cooperative Cellular Wireless Networks", Cambridge University Press, 2011.
3. Kao-Cheng Huang, Zhaocheng Wang, "Millimeter wave communication systems", John Wiley \& Sons, Hoboken, New Jersey, 2011
4. T.S. Rappaport, "Wireless Communications", Pearson Education, $2^{\text {nd }}$ Edition, 2014.
5. David Tse and Pramod Viswanath, "Fundamentals of Wireless Communication", Cambridge University Press, 2005.
6. Ekram Hossain, Vijay K. Bhargava (Editor), Gerhard P. Fettweis (Editor), "Green Radio Communication Networks", Cambridge University Press, 2012.

> M.Bhurathi

Signature of BOS Chairperson, ECE

U18ECE0005

RADAR AND NAVIGATIONAL AIDS

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Discuss principles of radar (K2).
CO2: Describe operation of Moving Target Indicator and pulse Doppler radar (K2).
CO3: Explain the building blocks of Radar transceiver (K2).
CO4: Explain concepts of navigational system (K2).
CO5: Compare different navigation systems (K3).
CO6: Discuss instrument landing system and distance measuring equipment (K2).

Pre-requisites:

1. U18EC I5201 Communication Engineering I
2. U18EC T5005 Antennas and Wave Propagation

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S		M											M
CO2	S		M											M
CO3	S													M
CO4	S		M											M
CO5	S													M
CO6	S		M											M

Course Assessment Methods

```
DIRECT
Continuous Assessment Test I, II
Assignment
End Semester Examination
INDIRECT
Course-end survey
```


INTRODUCTION TO RADAR

Radar Block Diagram- Radar Frequencies - Radar equation -Applications of Radar - Probabilities of Detection and False Alarm- Integration of Radar Pulses- Radar Cross Section of Targets- Radar cross Section Fluctuations- Transmitter Power- Pulse Repetition Frequency- Antenna Parameters - System losses.

M.Bhurathi

Signature of BOS Chairperson, ECE

MTI AND PULSE DOPPLER RADAR
09 Hours
Introduction to Doppler and Moving Target Indicator (MTI) Radar- Delay Line Cancellers - Staggered Pulse Repetition Frequencies - Digital MTI Processing - Moving Target Detector - Limitations to MTI Performance - MTI from a Moving Platform
Pulse Doppler Radar - Tracking with Radar - Monopulse Tracking -Conical Scan and Sequential Lobing - Limitations to Tracking Accuracy - Low Angle Tracking - Tracking in Range - Other Tracking Radar Topics -Comparison of Trackers - Tracking with Surveillance Radars (ADT).

DETECTION OF SIGNAL

09 Hours
Introduction - Automatic Detector - Constant False Alarm Rate Receivers - Radar operator - Propagation Radar Waves - Atmospheric Refraction -Standard propagation - Nonstandard Propagation - Radar Antenna - Reflector Antennas - Electronically Steered Phased Array Antennas - Phase Shifters - Frequency Scan Arrays. Radar Transmitters - Linear Beam Power Tubes - Solid State RF Power Sources - Magnetron Radar Receivers - Receiver noise Figure - Superheterodyne Receiver - Duplexers and Receiver Protectors- Radar Displays.

METHODS OF NAVIGATION

09 Hours
Radio Direction Finding - Loop Antenna - Loop Input Circuits - Aural Null Direction Finder - Goniometer - Errors in Direction Finding - Adcock Direction Finders - Direction Finding at Very High Frequencies Automatic Direction Finders - Commutated Aerial Direction Finder - Range and Accuracy of Direction Finders Radio Ranges - LF/MF Four course Radio Range - VHF Omni Directional Range(VOR) - VOR Receiving Equipment - Range and Accuracy of VOR - Hyperbolic Systems of Navigation (Loran and Decca) - Loran A Equipment - Range and precision of Standard Loran - Loran C - Decca Navigation System - Decca Receivers - Range and Accuracy of Decca - Omega System.

DME AND TACAN

09 Hours
Distance Measuring Equipment - Operation of DME - TACAN - TACAN Equipment Approach and Landing - Instrument Landing System (ILS) - Ground Controlled Approach (GCA) System - Microwave Landing System (MLS) Doppler Navigation - Doppler Effect - Beam Configurations -Doppler Frequency Equations - Track Stabilization - Doppler Spectrum - Components of the Doppler Navigation System - Doppler range Equation - Accuracy of Doppler Navigation Systems.
Theory: 45 Tutorial: $0 \quad$ Practical: $0 \quad$ Project: $0 \quad$ Total: $\mathbf{0}$ Hours

M. Blurathi

Signature of BOS Chairperson, ECE

REFERENCES:

1. Merrill I. Skolnik ," Introduction to Radar Systems", Tata McGraw-Hill (3rd Edition) 2003.
2. N.S.Nagaraja, -Elements of Electronic Navigation Systems, 2nd Edition, Tata McGraw- Hill, 2000.
3. Myron Kyton and W.R.Fried Avionics Naviagtion systems - , John wiley\& sons, (2nd Edition) 1997.
4. Albert Helfrick.D,l, Principles of Avionics, Avionics communications Inc,2004.
5. Peyton Z. Peebles:, "Radar Principles", John wiley, 2004.
6. J.C Toomay, " Principles of Radar", 2nd Edition -Prentice Hall India, 2004.
7. Albert Helfrick.D, Principles of Avionics, Avionics communications Inc,2004.

M.Blurathi

Signature of BOS Chairperson, ECE

SIGNAL PROCESSING

M.Bhrathi

Signature of BOS Chairperson, ECE

U18ECE0011

DIGITAL IMAGE PROCESSING

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Explain the fundamental concepts of a digital image processing (K1).
CO2: Compare various Image Transform Techniques (K3).
CO3: Apply enhancement and restoration algorithms for image analysis. (K3).
CO4: Choose appropriate segmentation algorithms for given application (K4).
CO5:Compare various Image compression techniques (K3).

Pre-requisites:

1. U18EC I4201Digital Signal Processing

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	P05	PO6	PO7	P08	P09	PO10	P011	PO12	PSO1	PSO2
CO1	S													M
CO 2		S	M	M										M
CO3		S	M											M
CO4		S	M	M	S									M
CO5		S	M	M	S									M

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II
Assignment
Group Presentation
End Semester Examination
INDIRECT
Course-end survey

M.Blurathi

Signature of BOS Chairperson, ECE

DIGITAL IMAGE FUNDAMENTALS
09 Hours
Elements of visual perception - Image sensing and acquisition - Image Formation Model, Image Sampling and Quantization, Representation of Digital Images, Spatial and Gray level Resolution, Zooming and Shrinking of Digital Images, Basic relationship between pixels - Basic gray level transformations. Color images - Color models - Chromaticity diagram.

IMAGE TRANSFORMS

09 Hours
1D and 2D image transforms - Separable Transforms - One dimensional Fourier Transform - DFT - Two dimensional Fourier Transform - Discrete Cosine Transform - Walsh-Hadamard Transform - Wavelet transform -discrete and continuous- Haar transform - Properties.

IMAGE ENHANCEMENT AND RESTORATION

09 Hours
Image Enhancement: Spatial Domain Methods. Image subtraction- Image averaging- Spatial filtering Smoothing, Sharpening filters-First and Second Derivatives- Histogram -Histogram -Equalization Frequency Domain Methods - Filtering - Smoothing and Sharpening-Butterworth filter
Image Restoration: Model of Image Degradation/ Restoration process - Linear, position-invariant degradation - Estimating the degradation function - Inverse filtering- Weiner filtering-Unconstrained restoration

IMAGE SEGMENTATION AND REPRESENTATION

09 Hours
Detection of discontinuities - Point, Line and Edge detection - Gradient operators - Edge linking - Graph theoretic technique - Thresholding - global and adaptive -Region-based segmentation.
Boundary representation - chain codes - Polygonal approximation-Signatures- skeletons - Boundary segmentsBoundary descriptors: Shape numbers-Fourier descriptors-Regional descriptors-topological descriptors

IMAGE COMPRESSION

Introduction to image compression-Lossy and Lossless compression - Sequential and Progressive Compression - Rate/Distortion optimization - compression metrics- Huffman coding - Run LengthCoding

- Predictive coding - DPCM - Transform coding - Vector quantization-Image compression standards.
Theory: 45 Tutorial: $0 \quad$ Practical: $0 \quad$ Project: $0 \quad$ Total: 45 Hours

REFERENCES:

1. R. C. Gonzalez, R. E. Woods, "Digital Image Processing", Pearson Education, 4 ${ }^{\text {th }}$ Edition, 2017.
2. Anil K. Jain, "Fundamentals of Digital Image Processing", Pearson Education, $1^{\text {st }}$ Edition, 2015.
3. David Salomon, "Data Compression", Springer Verlag, NewYork, Inc., $4{ }^{\text {th }}$ Edition, 2006.
4. Dr.S.Jayaraman, " Digital Image Processing", Tata McGraw-Hill, 2009.
5. William K Pratt, "Digital Image Processing", John Wiley and Sons, 2007, $4^{\text {th }}$ Edition.
6. Dr.Sridhar, "Digital Image Processing", OUP India, 2011.

U18ECE0012

MULTIMEDIA AND COMPRESSION

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Describe the basics of the data compression techniques (K2).
CO2: Compare text compression algorithms in terms of speed and compression ratio (K4).
CO3: Analyze various speech and audio compression techniques (K4).
CO4: Choose appropriate compression techniques for image compression (K4).
CO5: Compare various video compression standards (K4).

Pre-requisites:

1. U18EC I4201 Digital Signal Processing

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2
CO1		S												M
CO2		S												M
CO3		S	M	M										M
CO4		S	M	M										M
CO5		S	M	M										M

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II
Assignment
Group Presentation
End Semester Examination
INDIRECT
Course-end survey

INTRODUCTION

09 Hours
Multimedia data - Features - Storage requirements for multimedia - Need for Compression - Taxonomy of compression - Metrics - Quantitative and Qualitative techniques - Overview of source coding - Vector quantization.

TEXT COMPRESSION

09 Hours
Characteristics of text data - Run Length Encoding - Huffmann coding - Adaptive Huffmann Coding Arithmetic coding - Dictionary techniques - LZW algorithm - GIF, TIF.

AUDIO AND SPEECH COMPRESSION

09 Hours
Fundamental concepts of speech and audio - Audio compression techniques - μ Law and A- Law companding - PCM, DPCM, DM, ADM - sub-band coding - G. 722 - MPEG audio - MP3, MP4 - LPC - CELP, RELP coders.

IMAGE COMPRESSION

09 Hours
Image data representation - Transform Coding - DCT - JPEG Standard - Fundamentals of Wavelets Properties -DWT - Sub-band coding - QMF Filters -JPEG 2000 standard.

VIDEO COMPRESSION

09 Hours
Fundamental concepts of video - Video signal representation - Motion estimation and compensation Techniques - MPEG Video Compression standards: MPEG - 1, 2 and 4 - H. 264 Standard.

Theory: 45	Tutorial: 0	Practical: 0	Project: 0	Total: 45 Hours

REFERENCES:

1. Khalid Sayood, "Introduction to Data Compression", Morgan Kauffman, $5^{\text {th }}$ Edition, 2017.
2. David Salomon, "Data Compression - The Complete Reference", Springer Verlag New York Inc., $4^{\text {th }}$ Edition, 2006.
3. Mark S. Drew, Ze-Nian Li, JiangchuanLiu, " Fundamentals of Multimedia", Prentice Hall of India, 1st Edition, 2014.
4. Yun Q.Shi, Huifang Sun, " Image and Video Compression for Multimedia Engineering Fundamentals, Algorithms \& Standards", CRC press, 2003
5. Peter Symes, "Digital Video Compression", McGraw Hill Pub., 2004.

> M.Blurathi

Signature of BOS Chairperson, ECE

U18ECE0013

BIOMEDICAL SIGNAL PROCESSING

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able
CO1: Describe various bio medical signals and their characteristics (K2)
CO2: Apply signal averaging for different applications (K3)
CO3: Analyze biomedical signals using Transforms (K3)
CO4: Analyze biomedical signals using time series analysis (K3).
CO5: Classify Biomedical signals (K4)

Pre-requisites:

1.U18EC I4201 Digital Signal Processing

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	S	S												M
CO 2	S	S	S	M										M
CO3	S	S	S	M		M								M
CO4	S	S	S	M		M								M
CO5	S	S	S	M		M								M

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II
Assignment
Group Presentation
End Semester Examination
INDIRECT
Course-end survey

BIOSIGNALS AND THEIR CHARACTERISTICS

09 Hours
Source of Bioelectric potential, Resting and action potential, Propagation of action potentials in nerves, Characteristics of biomedical signals, The nature of biomedical signals signal analysis, Biomedical signal acquisition and processing, Difficulties in biomedical signal acquisition and analysis, computer aided diagnosis

M.Bhurathi

Signature of BOS Chairperson, ECE

SIGNAL AVERAGING
09 Hours
Basics of signal averaging, signal averaging as a digital filter, limitations of signal averaging. Removal of artifacts by averaging. Filtering for removal of artifacts: Introduction, Random noise, structured noise and physiological interference, stationary versus non stationary process. Finite time averaging: Introduction, finite time estimation of mean value, estimation of variance, correlation, synchronous averaging.

FREQUENCY DOMAIN ANALYSIS AND ADAPTIVE FILTERING

09 Hours

Frequency domain analysis Introduction, Spectral analysis, linear filtering, Removal of high frequency noise (power line interference). Adaptive filtering- LMS adaptive filter, adaptive noise canceling in ECG, improved adaptive filtering in FECG.

TIME SERIES ANALYSIS

09 Hours
Time series analysis - linear prediction models, process order estimation, lattice representation, non stationary process, fixed segmentation, adaptive segmentation, application in EEG, PCG signals, Time varying analysis of Heart-rate variability, model based ECG simulator.

BIOSIGNAL CLASSIFICATION AND RECOGNITION
09 Hours
Signal classification and recognition - Statistical signal classification, linear discriminant function, direct feature selection and ordering, Back propagation neural network-based classification. Application in Normal versus Ectopic ECG beats.

Theory: 45	Tutorial: 0	Practical: 0	Project: 0	Total: 45 Hours

REFERENCES:

1. Arnon Cohen, Bio-Medical Signal Processing $2^{\text {nd }}$ edition, CRC Press Inc., Boca Rato, Florida, 2000
2. Rangaraj M. Rangayyan, Biomedical Signal Analysis-A case study approach, $2^{\text {nd }}$ edition, Wiley, 2015
3. D.C.Reddy, Biomedical Signal Processing- principles and techniques, Tata McGraw-Hill Education, 2005

M.Bhrathi

U18ECE0014

MACHINE LEARNING

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Compare the various learning methods (K2)
CO2: Compare and apply neural network-based learning algorithm (K3)
CO3: Apply appropriate linear model for a given application (K3)
CO4: Apply probabilistic, clustering and feature reduction technique for suitable application (K3)
CO5: Choose appropriate graphical model for given application (K3)

Pre-requisites:

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	P06	PO7	P08	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	M	S												
CO2	S	S	M	M										
CO3	M	S	S											
CO4	M	S	S	M	M									
CO5	M	S	S	M										

Course Assessment Methods

DIRECT

Continuous Assessment Test I, II
Assignment
Group Presentation
End Semester Examination

INDIRECT

Course-end survey

FUNDAMENTALS OF MACHINE LEARNING

Learning - types of learning: supervised, unsupervised and reinforcement learning- feasibility of learning -Vapnik-Chervonenkis Bound (VC Bound), error and noise -training versus testing-theory of generalization -generalization bound- approximation- generalization tradeoff -bias and variance decomposition -learning curve.

M.Bhurathi

Signature of BOS Chairperson, ECE

NEURAL NETWORK

09 Hours
Brain and neuron -Models of a neuron -Perceptron- feed-forward neural networks, learning Boolean function Network training-Error Propagation, Multi-layer Perceptron, back propagation algorithm - network pruning, limitations and convergence of back- propagation learning, Generalized radial-basis function networks

LINEAR MODEL

09 Hours
Linear models, Linear models for regression: linear basis function models, Bayesian linear regression. Linear models for classification: discriminant functions -Least squares for classification, Fisher's linear discriminant - two classes and multiple classes.
Probabilistic Generative Models: Maximum margin classifiers - support vector machine.

CLUSTERING

05 Hours
Probability and learning - Gaussian Mixture model, K-means clustering, Vector Quantization, Self-Organized feature map.

DIMENSIONALITY REDUCTION

04 Hours
Dimensionality reduction, Factor analysis, Linear Discriminant analysis, Principal Component Analysis, Independent Component Analysis.

GRAPHICAL MODEL

09 Hours
Directed graphical models - Bayesian network, Undirected graphical models -Markov Random fields-inference in graphical models - Markov model - Hidden Markov Models (HMMs).
Decision trees - Classification and regression tree.

| Theory: 45 | Tutorial: $\mathbf{0}$ | Practical: $\mathbf{0}$ | Project: 0 | Total: $\mathbf{4 5}$ Hours |
| :--- | :--- | :--- | :--- | :--- | :--- |

REFERENCES:

1. Tom. M. Mitchell 2013 - Machine learning, first edition, McGraw Hill education,
2. Stephen Marsland - Machine learning - an algorithmic perspective, second edition, Chapman and Hall CRC machine learning and Pattern recognition series, 2014
3. EthemAlpaydin, "Introduction to Machine Learning", MIT Press, Third Edition, 2014
4. K. P. Murpthy, -Machine Learning: A probabilistic perspectivell, MIT Press, 2012
5. Laurene Fauseett, "Fundamentals of Neural Networks", Prentice Hall India, New Delhi, 2004.
6. Bishop, Christopher, Pattern Recognition and Machine Learning Springer 2007
7. D. Barber, —Bayesian Reasoning and Machine Learningll, Cambridge University Press, 2012.
8. Simon Haykin, Neural networks - a comprehensive foundation, second edition, Pearson Education- 2008.
9. M. Mohri, A. Rostamizadeh, and A. Talwalkar, -Foundations of Machine Learningll, MIT Press,2012.

M.Bhurathi

Signature of BOS Chairperson, ECE

U18ECE0015

STASTISTICAL SIGNAL PROCESSING

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Understand discrete random process (K2).
CO2: Compare various power spectrum estimation methods (K3).
CO3: Apply Weiner Filter for a given application (K3).
CO4: Compare and Implement adaptive filtering algorithms (K3).
CO5: Apply wavelet transform for signal analysis (K3).

Pre-requisites:

1.U18EC I4201 Digital Signal Processing

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	P05	PO6	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	S	M											M	
CO2		S	M											M
CO3		S	M	M	S								M	
CO4		S	M	M	S								M	
CO5		S	M	M	S								M	M

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II
Assignment
Group Presentation
End Semester Examination
INDIRECT
Course-end survey

DISCRETE-TIME RANDOM SIGNALS

09 Hours
Discrete random process - Ensemble averages, Stationary and ergodic processes, Autocorrelation and Autocovariance properties and matrices, White noise, Power Spectral Density, Spectral Factorization, Filtering random processes.

SPECTRUM ESTIMATION

09 Hours
Introduction to power spectrum estimation - Parameter estimation - Bias and consistency - Non parametric methods - Periodogram - Modified Periodogram - Bartlett Method - Welch Method - Blackman Tukey method

- ARMA, AR, MA processes- Yule-Walker equations - Parametric methods for spectral estimation.

M.Bhirathi

Signature of BOS Chairperson, ECE

LINEAR PREDICTION AND ESTIMATION
09 Hours
Forward and backward linear prediction - Lattice filter realization - Optimum Filtering - FIR Weiner filter Filtering and Linear prediction - Non-causal and causal IIR Weiner filters.

ADAPTIVE FILTERS

09 Hours
Principles of adaptive filters - FIR adaptive filters- Newton's steepest descent adaptive filter-LMS adaptation algorithms-RLS algorithm, Applications - Noise cancellation - channel equalization- echo cancellers.

WAVELET TRANSFORM
09 Hours
Fourier Transform and its limitations - Short Time Fourier Transform - Continuous Wavelet Transform Multi resolution analysis - Discrete Wavelet Transform - Haar Wavelet - Daubechies Wavelet Implementation of wavelet transform with sub band coding.
Theory: 45 Tutorial: $0 \quad$ Practical: $0 \quad$ Project: $0 \quad$ Total: 45 Hours

REFERENCES:

1. Monson H. Hayes, "Statistical Digital Signal Processing and Modeling", Wiley Eastern, 2009.
2. John G. Proakis, Dimitris G. Manolakis, " Digital Signal Processing, Principles, Algorithms and Applications", PHI, $3^{\text {rd }}$ Edition, 2014.
3. Sanjit K. Mitra, "Digital Signal Processing: A Computer Based Approach", 2nd Edition, Tata McGraw-Hill, 2001.
4. Dimitris G. Manolakis, Vinay K. Ingle, Stephen M. Kogon, "Statistical and Adaptive Signal Processing". Artech House, 2005.
5. C. Sidney Burrus, Ramesh A. Gopinath, HaitaoGuo, "Introduction to Wavelets and Wavelet Transforms", Prentice Hall, 1998.

> M.Bhirathi

Signature of BOS Chairperson, ECE

COMMUNICATION NETWORKS

M.Bhrathi

Signature of BOS Chairperson, ECE

U18ECE0021

ADHOC WIRELESS NETWORKS

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Describe the fundamentals of Adhoc Wireless Networks.(K2)
CO2: Analyze the various MAC layer protocols in Adhoc Wireless Networks.(K3)
CO3: Compare the various Routing protocols in Adhoc Wireless Networks.(K3)
CO4: Analyze the Transport layer protocols in Adhock Wireless Networks.(K3)
CO5: Explore the security concepts in Adhoc Wireless Networks.(K3)

Pre-requisites:

1. U18EC I5203 Communication Networks

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
Cos	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		S	M	M										S
CO 2		S	M	S										S
CO 3	S	M	M											M
CO 4	S	M	M											M
CO5	S	M	M											M

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II
Assignment
End Semester Examination
INDIRECT
Course-end survey

INTRODUCTION

09 Hours
Fundamentals of Wireless Communication Technology - The Electromagnetic Spectrum - Radio propagation Mechanisms - Characteristics of the Wireless Channel -mobile ad hoc networks (MANETs) and wireless sensor networks (WSNs): concepts and architectures. Applications of Ad Hoc and Sensor networks. Design Challenges in Ad hoc and Sensor Networks.

MAC PROTOCOLS FOR AD HOC WIRELESS NETWORKS

Issues in designing a MAC Protocol- Classification of MAC Protocols- Contention based protocols, Contention based protocols with Reservation Mechanisms- Contention based protocols with Scheduling Mechanisms Multi channel MAC-IEEE 802.11

M. Bhurathi

Signature of BOS Chairperson, ECE

ROUTING PROTOCOLS IN ADHOC WIRELESS NETWORKS

09 Hours
Issues in designing a routing for Ad hoc networks- proactive routing, reactive routing (on-demand), hybrid routing- Table Driven Routing Protocols: DSDV, WRP, CGSR SLE: STAR protocol On-Demand Routing Protocols: Dynamic source RoutingProtocol DSR, AODV, TORA, LAR, ABR, and FORP.

TRANSPORT LAYER PROTOCOLS IN ADHOC WIRELESS NETWORKS

09 Hours
Transport Layer Protocols for Ad-hoc wireless Networks: Introduction, Issues in Designing a Transport Layer Protocol for Ad-hoc wireless Networks, Design Goals of a Transport Layer Protocol for Ad hoc wireless Networks, Classification of Transport Layer Solutions, TCP over Ad-hoc wireless Networks: Feedback-Based TCP, TCP with Explicit Failure Notification, TCP-BUS, Ad-hoc TCP, Split TCP.

SECURITY IN ADHOC WIRELESS NETWORKS

09 Hours
Security in wireless Ad hoc wireless Networks, Network security requirements, Issues \&Challenges in Security Provisioning, Network security Attacks, Key Management: Symmetric and Asymmetric key Algorithms, Key management in Ad-hoc Wireless Networks: Secure routing in Ad hoc wireless Networks: Requirements, SAR protocol, Security-Aware AODV protocol

Theory: 45
Tutorial: $0 \quad$ Practical: 0
Project: 0
Total: $\mathbf{4 5}$ Hours

REFERENCES:

1. C. Siva Ram Murthy, and B. S. Manoj, "Ad Hoc Wireless Networks: Architectures and Protocols ", Prentice Hall Professional Technical Reference, 2008.
2. Carlos De MoraisCordeiro, Dharma Prakash Agrawal "Ad Hoc and Sensor Networks: Theory and Applications (2nd Edition), World Scientific Publishing, 2011.
3. C.K.Toh, "Ad Hoc Mobile Wireless Networks", Pearson Education, 2002
4. ErdalÇayırcı ,Chunming Rong, "Security in Wireless Ad Hoc and Sensor Networks", John Wiley and Sons, 2009.
5. Ozan K. Tonguz and Gianguigi Ferrari, "Ad hoc Wireless Networking", John Wiley, 2006.
6. Xiuzhen Cheng, Xiao Hung, Ding-Zhu Du, "Ad hoc Wireless Networking", Kluwer Academic Publishers, 2004.

HIGH SPEED NETWORKS

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Explain the concepts of ATM and high speed LAN (K2).
CO2: Analyze congestion and traffic managements concepts (K4).
CO3: Discuss quality of services in IP networks (K2).
CO4: Summarize interworking of different protocols with ATM (K2).
CO5: Compare different IP forwarding architectures and integrated/differentiated services (K4).
CO6: \quad Summarize Bluetooth module protocol stacks (K2).

Pre-requisites:

1. U18EC I5203 Communication Networks

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	S		M	S										M
CO3	S		M											M
CO4	S													M
CO5	S			S										M
CO6	S				W									M

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II
Assignment
End Semester Examination
INDIRECT
Course-end survey

HIGH SPEED NETWORKS

09 Hours
Frame Relay Networks - Asynchronous transfer mode - ATM Protocol Architecture, ATM logical Connection, ATM Cell - ATM Service Categories - AAL. High Speed LANs: Fast Ethernet, Gigabit Ethernet, Fiber Channel - - Wireless LAN's, WiFiandWiMax Networks applications, requirements - Architecture of 802.11.

M.Bhirathi

Signature of BOS Chairperson, ECE

CONGESTION AND TRAFFIC MANAGEMENT
09 Hours
Queuing Analysis - Queuing Models - Single Server Queues - Effects of Congestion -Congestion Control Traffic Management - Congestion Control in Packet Switching networks - Frame Relay Congestion Control- Need for Flow and error Control

QUALITY OF SERVICE IN IP NETWORKS
09 Hours
Integrated Services Architecture - Approach, Components, Services- Queuing Discipline, FQ, PS, BRFQ, GPS, WFQ - Random Early Detection, Differentiated Services

ADVANCED NETWORK ARCHITECTURE

09 Hours
IP forwarding architectures overlay model - Multi Protocol Label Switching (MPLS) - integrated services in the Internet - Resource Reservation Protocol (RSVP) - Differentiated services

BLUE TOOTH TECHNOLOGY

09 Hours
The Blue tooth module - Protocol stack Part I: Antennas - Radio interface - Base band - The Link controller - The Link Manager - The Host controller interface The Blue tooth module - Protocol stack Part II: Logical link control and adaptation protocol - RFCOMM - Service discovery protocol - Wireless access protocol.
$\begin{array}{lllll}\text { Theory: } 45 & \text { Tutorial: } 0 & \text { Practical: } 0 & \text { Project: } 0 & \text { Total: 45 Hours }\end{array}$

REFERENCES:

1. William Stallings, "High-speed Networks and Internets", 2nd edition, Pearson education Asia, 2003.
2. Jean Walrand and Pravinvaraiya ,"High Performance Communication networks",2nd edition, Harcourt and Morgan Kauffman,London,2000.
3. Sumit Kasera, PankajSethi, "ATM Networks", Tata McGraw-Hill, New Delhi, 2000.
4. Jennifer Bray, Charles Sturman, "Bluetooth: Connect Without Cables", Prentice Hall, 2001, Digitized 7 Dec 2007.
5. Jennifer Bray and Charles F.Sturman,"Blue Tooth" Pearson education Asia, 2001
6. Leon Gracia, Widjaja, "Communication networks", Tata McGraw-Hill, New Delhi, 2000.

M.Bhurathi

Signature of BOS Chairperson, ECE

U18ECE0023

NETWORK SECURITY

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Apply block cipher and stream cipher algorithms (K3)
CO2: Employ Public key cryptographic techniques (K2).
CO3: Explain the authentication and hash algorithms (K2).
CO4: Analyze the digital signature concepts and applications (K3).
CO5: Apply the Network and System level security measures (K3).

Pre-requisites:

1. U18EC I5203 Communication Networks

CO/PO Mapping:

(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak

COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		S	M	M										S
CO2		S	M	S										S
CO3	S	M	M											M
CO4	S	M	M											M
CO5	S	M	M											M
CO6	S	M	M											M

Course Assessment Methods

DIRECT

Continuous Assessment Test I, II
Assignment
End Semester Examination

INDIRECT

Course-end survey

CRYPTOGRAPHY AND SYMMETRIC KEY TECHNIQUES

10 Hours
Modern cryptography, Historical ciphers and cryptanalysis, Security attacks, services and mechanisms, OSI security architecture. SYMMETRIC TECHNIQUES - Substitution ciphers, Transposition ciphers, Characteristics of good ciphers Data Encryption Standard (DES), Advanced Encryption Standard (AES), Blowfish, Block cipher modes of operation, Stream cipher: RC5.

ASYMMETRIC KEY TECHNIQUES

Basics of number theory, Principles of public key cryptosystems, RSA Algorithm, Key management, D Hellman key exchange algorithm, Elliptic Curve Cryptography (ECC), Case study: eCash, PAKE proto

HASH FUNCTIONS AND MESSAGE AUTHENTICATION CODES

10 Hours
Hash Functions: Introduction, Applications, Requirements and security, Secure Hash Algorithm (SHA), RACE Integrity Primitives Evaluation Message Digest (RIPEMD-160).
Message Authentication: Authentication requirements, Authentication functions, Message Authentication Codes (MAC), Hash-based Message Authentication Code (HMAC)

DIGITAL SIGNATURES

07 Hours
Digital Signatures, Authentication Protocols, Digital Signature Standard (DSS), Elgamal, Schnorr, Applications.

NETWORK SECURITY AND SYSTEM LEVEL SECURITY
08 Hours
Authentication Applications: Kerberos - X. 509 Authentication Service- Electronic Mail Security- PGP-S/MIME-IP Security-Secure Electronic Transaction Intrusion detection - password management - Viruses and related Threats -Virus Counter measures- Firewall Design Principles

Theory: 45	Tutorial: 0	Practical: 0	Project: 0	Total: 45 Hours

REFERENCES:

1. Behrouz A Foruouzan, "Cryptography\& Network Security", Tata McGraw Hill, 2007.
2. William Stallings, "Cryptography and Network Security - Principles and Practice", Pearson Educational, 2013
3. Josef Pieprzyk, Thomas Hardjono and Jennifer Sebery, "Fundamentals of Computer Security", Springer, 2002.
4. Bruce Schneier, "Applied Cryptography", John Wiley, 2008.
5. Charles P Pfleeger and Shari Pfleeger, "Security in Computing", Pearson Education, 2009.

> Miblurathi

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Describe the fundamentals of Wireless Communication (K2).
CO2: Analyze Multiple Access Mechanism (K3).
CO3: Demonstrate various 3G Technologies (K2).
CO4: Explore Various Wireless Standards (K3).

Pre-requisites:

1.U18EC T7002 Wireless Communication
2. U18EC I5203 Communication Networks

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		S	M	M										S
CO 2		S	M	S										S
CO 3	S	M	M											M
CO4	S	M	M											M

Course Assessment Methods

DIRECT

Continuous Assessment Test I, II
Assignment
End Semester Examination

INDIRECT

Course-end survey

FUNDAMENTALS OF WIRELESS COMMUNICATIONS

09 Hours
Theory of Radio Communication Channels-Radio Signal Propagation-Fading Channel ModelsNarrowband and Frequency-Domain Characteristics-Wideband and Time-Domain Characteristics- Spread Spectrum Techniques-Direct-Sequence Spread Spectrum Techniques-Frequency Hopping Spread Spectrum Techniques-Time Hopping Spread Spectrum and Ultra-Wideband Techniques.

MULTIPLE ACCESS TECHNOLOGIES

09 Hours
Frequency Division Multiple Access-Time Division Multiple Access-Code Division Multiple Access- Random Multiple Access Technologies-Multiple User Signal Processing-Multiuser Joint Detection against MAI-PilotAided CDMA Signal Detection-Beam-Forming against Co-Channel Interference- OSI Reference ModelSwitching Techniques-Circuit Switching Networks-Packet Switching Networks-IP-Based Networking.

M. Bhurathi

Signature of BOS Chairperson, ECE

3G MOBILE CELLULAR TECHNOLOGIES
09 Hours
CDMA2000-Operational Advantages-General Architecture-Air link Design-Data Throughput-Turbo Coding -Forward Link-Scheduling-Reverse Link-CDMA2000 1xEV Signaling-Handoffs-Summary of CDMA2000 1x-EV-CDMA2000 1xEV-DO-CDMA2000 1xEV-DV-WCDMA-History of UMTS WCDMA-ETSI UMTS versus ARIB WCDMA -UMTS Cell and Network Structure-UMTS Radio Interface-UMTS Protocol StackUTRA Channels-UTRA Multiplexing and Frame Structure- Spreading and Carrier Modulations-Packet DataPower Control-Handovers-TD-SCDMA.

STANDARDS FOR WIRELESS NETWORKS

09 Hours
Fundamentals of IEEE 802.11 Standards-Architecture and Functionality of a MAC Sublayer-IEEE 802.11 Frequency Hopping Spread Spectrum-IEEE 802.11 Direct-Sequence Spread Spectrum- Infrared SpecificationsIEEE 802.11b Supplement to 802.11 Standards-IEEE 802.11 g Standard-IEEE 802.11a Supplement to 802.11 Standards-IEEE 802.11 Security-Authentication- WEP-IEEE 802.15 WPAN Standards-IEEE 802.15.3a Standard-IEEE 802.15.4 Standard-IEEE 802.16 WMAN Standards-ETSI HIPERLAN and ETSI HIPERLAN/2 Standards-MMAC by Japan

HISTORY OF WIRELESS STANDARDS

09 Hours
Cellular Phone Standards-First Generation Analog Systems-Second Generation Digital Systems- Evolution of 2G Systems-Third Generation Systems- Wireless Local Area Networks- Wireless Short- Distance Networking Standards.

Theory: 45 Tutorial: $0 \quad$ Practical: $0 \quad$ Project: $0 \quad$ Total: 45 Hours

REFERENCES:

1. Hsiao-Hwa Chen, Taiwan Mohsen Guizani "Next Generation Wireless Systems and Networks" John Willey Publications,2006
2. Andrea Goldsmith, "Wireless Communications", Cambridge University Press, 2008.
3. T.S. Rappaport, "Wireless Communications", Pearson Education, ${ }^{\text {nd }}$ Edition, 2014.

M.Bhurathi

Signature of BOS Chairperson, ECE

U18ECE0025

GRAPH THEORY AND ITS APPLICATIONS

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Describe the basic concepts of graphs, and different types of graphs.(K2)
CO2: Apply tree structures for suitable applications.(K3)
CO3: Apply suitable graph model and algorithm for solving applications.(K3)
CO4: Explain the concepts of Colouring, Covering and Partitioning.(K2)
CO5: Analyze electrical networks through graph theory.(K3)

Pre-requisites:

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	P05	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		S	M	M									S	
CO2		S	M	S									S	
CO3	S	M	M										M	
CO4	S	M	M										M	
CO5	S	M	M										M	

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II
Assignment
End Semester Examination
INDIRECT
Course-end survey

INTRODUCTION

09 Hours

Introduction and Applications of Graphs - Types of Graphs - Isomorphism - Sub graphs - Walks, Paths and Circuits - Connected Graphs, Disconnected Graphs and Components - Euler graphs - Hamiltonian Graph - Traveling Salesman Problem.

TREES

09 Hours
Trees - Properties of Trees - Distance and Centres - Types - Rooted and Binary Trees - On Counting Trees - Spanning Trees - Fundamental Circuits - Cut Sets - Properties of a Cut-Sets - Fundamental Circuit and Cut-Sets - Connectivity and separability.

GRAPHS AND MATRICES

Planar Graphs - Various Representation of Planar graphs - Detection of Planarity - Dual Graph Geometric and Combinatorial - Digraphs - Types - Dual Digraph - Euler Digraph.
Incidence matrix - Circuit matrix -Application to a Switching Network - Cut-set matrix - Path Matrix -Adjacency Matrix.

COLOURING, COVERING AND PARTITIONING

Vertex-coloring - chromatic number, vertex coloring algorithms - sequential vertex coloring, largest degree first algorithm, applications - scheduling problem, assignment of radio frequencies, fast register allocation for computer programming.
Chromatic Partitioning - Chromatic Polynomial - Matchings - Coverings

ELECTRICAL NETWORK ANALYSIS BYGRAPH THEORY

Electrical Network - Kirchhoff's current and voltage laws - Loop currents and Node Voltages - RLC Networks with Independent sources: Nodal Analysis - RLC Networks with Independent sources: Loop Analysis - General lumped, linear and fixed networks.

Theory: 45	Tutorial: 0	Practical: $\mathbf{0}$	Project: $\mathbf{0}$	Total: $\mathbf{4 5}$ Hours

REFERENCES:

1. L.R.Foulds , "Graph Theory Applications", Springer ,2016.
2. Bondy, J. A. and Murty, U.S.R., "Graph Theory with Applications", North Holland Publication, 2008.
3. Diestel, R, "Graph Theory", Springer,3rd Edition,2006.
4. Kenneth H.Rosen, "Discrete Mathematics and Its Applications", Tata McGraw Hill , Seventh Edition.

> M.Bhirathi

RF and ANTENNA

M.Bhrathi

Signature of BOS Chairperson, ECE

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

Upon completion of the course, the student should be able to:
CO1: Outline the concepts of MEMS techniques and MEMS based wireless applications.(K3)
CO2: Explain the concepts of RF MEMS enabled circuit elements.(K3)
CO3: Illustrate the operation of RF MEMS reconfigurable circuits.(K4)
CO4: Describe the operation of MEMS filters and oscillators.(K4)

Pre-requisites:

CO/PO Mapping														
	Programme Outcomes(POs)													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	M												M
CO2		S	M											S
CO3		S	M											S
CO4	S													M

Course Assessment Methods

DIRECT
 Continuous Assessment Test I, II
 Assignment
 End Semester Examination
 INDIRECT
 Course-end survey

INTRODUCTION

09 Hours
Conceptual wireless systems - Wireless transceiver architectures - MEMS based wireless appliances enable ubiquitous connectivity - Physical aspects of RF circuit design - Transmission lines on thin substrates -Self-resonance frequency -Quality factor - Packaging - Practical aspects of RF circuit design

- DC biasing - Impedance mismatch effects in RF MEMS.

14 Hours

RF MEMS ENABLED CIRCUIT ELEMENTS

RF/Microwave substrate properties - Micromachined enhanced elements - Capacitors - Inductors Varactors - MEM switches - Shunt MEM switch - Push-pull series switch - Folded beam springs suspension series switch - Transmission line planar resonators - Cavity resonators - micromechanical resonators - Film bulk acoustic wave resonators - MEMS modeling - Mechanical modeling - Electromagnetic modeling.

M.Bhurathi

Signature of BOS Chairperson, ECE

RECONFIGURABLE CIRCUITS

Reconfigurable circuit elements - The resonant MEMS switch - Capacitors - Inductors - Tunable CPW resonator-MEMS microswitch arrays - Double - Stub tuner - Filters - Resonator tuning system - Massively parallel switchable RF front ends

ANTENNAS AND PHASE SHIFTERS

05 Hours

Tunable dipole antennas - Tunable microstrip patch - Array antenna - Phase shifters - Concepts - True time Delay digital phase shifters.

FILTERS \& OSCILLATORS

08 Hours
Film bulk acoustic wave filters - FBAR filter fundamentals - FBAR filter for PCS applications - RF MEMS filters - A Ka-Band millimeter - Wave Micromachined tunable filter - RF MEMS Oscillators - Concepts.

Theory: 45	Tutorial: 0	Practical: 0	Project: 0	Total: $\mathbf{4 5}$ Hours

REFERENCES:

1. Hector J. De Los Santos, "RF MEMS Circuit Design for Wireless Communications", Artech House, 2002.
2. Vijay K.Varadan, K.J. Vinoy and K.A. Jose, "RF MEMS and their Applications", Wiley India Pvt. Ltd, 2011.
3. Gabriel M. Rebeiz, "RF MEMS Theory, Design \& Technology", Wiley India Pvt. Ltd, 2010.

WEB REFERENCE

1. http://nptel.ac.in/courses/117105082/

> M.Blurathi

Signature of BOS Chairperson, ECE

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

Upon completion of the course, the student should be able to:
CO1: Describe Transmission line parameters and Smith Chart and applications (K3).
CO2: Choose appropriate passive components for the design of radio frequency circuits (K3)
CO3: Design RF Filters for the given parameters (K4)
CO4: Describe Impedance Matching Networks (K4)
CO5: Analyze RF Transistor Amplifier performance parameters and design RF oscillators and Mixers for the given parameters (K4)

Pre-requisites:

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	S		W											S
CO3		S	M											S
CO4		S	M											S
CO5		S	M	S										S
CO6	S		M											M

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II
Assignment
End Semester Examination
INDIRECT
Course-end survey

TRANSMISSION LINE THEORY

09 Hours
Review of Transmission Line Theory: Lumped Element Model, Field Analysis of Transmission Lines, Terminated Lossless Lines, SWR, and Impedance Mismatches. Planar Transmission-Lines: Stripline, Microstrip, Coplanar-Line.
Smith Chart: Reflection Coefficient, Load Impedance, Impedance Transformation, Admittance Transformation, Parallel and Series Connection. Revision of S-Parameters.

M.Bhurathi

Signature of BOS Chairperson, ECE

INTRODUCTION TO RF DESIGN

09 Hours
Importance of RF design, Electromagnetic Spectrum, RF behavior of passive Components, -High frequency resistors- high frequency capacitors- high frequency inductors, Chip components-chip resistors -chip capacitors and Circuit Board considerations, Scattering Parameters

09 Hours

RF FILTER DESIGN

Overview, Basic Resonator and Filter Configuration, Special Filter Realizations, Filter Implementations, Coupled Filter.

09 Hours

IMPEDANCE MATCHING NETWORKS

Impedance Matching using Discrete Components, Microstrip line Matching Networks, Single Stub Matching Network, Double Stub Matching Network. Quarter-Wave Transformers, Multi-Section and Tapered Transformers.

RF AMPLIFIERS, OSCILLATORS AND MIXERS

09 Hours
Characteristics; Amplifier Power Relations, Stability Considerations, Constant Gain Circles, Noise Figure Circles, Constant VSWR Circles, Low Noise Circuits; Broadband, High Power and Multistage Amplifiers. Basic Oscillator Model, High Frequency Oscillator Configurations, Basic Characteristics of Mixers.
Theory: 45 Tutorial: $0 \quad$ Practical: $0 \quad$ Project: $0 \quad$ Total: 45 Hours

REFERENCES:

1. Reinhold Ludwig and Powel Bretchko, "RF Circuit Design - Theory and Applications", Pearson Education Asia, First Edition, 2004
2. David M. Pozzar , " Microwave Engineering", $3^{\text {rd }}$ Ed., Wiley India, 2007.
3. Mathew M. Radmanesh, "Radio Frequency and Microwave Electronics", $2^{\text {nd }}$ Ed. Pearson Education Asia, 2006.
4. Mathew M. Radmanesh, "Advanced RF \& Microwave Circuit Design-The Ultimate Guide to System Design", Pearson Education Asia, 2009.
5. Joseph . J. Carr, "Secrets of RF Circuit Design", McGraw Hill Publishers, Third Edition, 2000

> M.Bhirathi

Signature of BOS Chairperson, ECE

U18ECE0033

ELECTROMAGNETIC INTERFERENCE AND COMPATIBILITY

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

Upon completion of the course, the student should be able to:
CO1: Explain various types of electromagnetic interferences and coupling methods
CO2: Discuss standards for electromagnetic interference measurements
CO3: Identify grounding and shielding methods to avoid EMI
CO4: Outline EMI measurement methods and procedures.
CO5: Describe radiation noise interference in electronic circuits

Pre-requisites:

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	S													S
CO2	S													S
CO3	S	M	M											M
CO4	M	S	M											S
CO5	M													S

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II
Assignment
End Semester Examination
INDIRECT
Course-end survey

BASIC CONCEPTS

09 Hours
EMI and EMC concepts and definitions with examples, Intra and Inter system EMI, Sources of EMI, Classification of EMI/EMC - CE, RE, CS, RS, Units of Measurement Parameters, EMI coupling modes - CM and DM, ESD Phenomena and effects, Transient phenomena and suppression, EMC Testing Categories, EMC Engineering Application.

EMI MEASUREMENTS

09 Hours
Basic principles of RE, CE, RS and CS measurements, EMI measuring instruments- Antennas, LISN, Feed through capacitor, current probe, open area test site, shielded anechoic chamber, TEM cell

EMC STANDARD AND REGULATIONS

09 Hours
National and Intentional standardizing organizations- FCC, CISPR, ANSI, DOD, IEC, CENEEC, FCC CE and RE standards, CISPR, CE and RE Standards, IEC/EN, CS standards, Frequency assignment - spectrum conversation

M.Bhurathi

Signature of BOS Chairperson, ECE

EMI CONTROL METHODS

09 Hours
Shielding, Grounding-safety grounds, signal grounds, single - point ground systems, multipoint ground systems, hybrid grounds, Bonding, Filtering, EMI gasket, Isolation transformer, opto isolator, PCB Traces Cross Talk.

DIGITAL CIRCUIT RADIATION NOISE

09 Hours
DM radiation, Controlling DM radiation, CM radiation, Controlling CM radiation, Frequency versus Time Domain, Analog versus Digital Circuits, Digital logic noise, Internal noise sources, Digital Circuit Ground noise, and Power distribution

Theory: 45	Tutorial: 0	Practical: 0	Project: 0	Total: 45 Hours

REFERENCES:

1. R Prasad Kodali.V, "Engineering Electromagnetic Compatibility" S.Chand \& Co, New Delhi, 2000.
2. Henry W. Ott, "Noise Reduction Techniques in Electronic System" - 2 ${ }^{\text {nd }}$ Edition - Wiley Inter science, 1988
3. Bem hard Keiser, "Principles of Electromagnetic Compatibility" - Artech House - $3^{\text {rd }}$ Edition, 1994
4. Don R.J. white Consultant Incorporate - "Handbook of EMI / EMC"- Vol I -V 1988
5. C.R.Paul, "Introduction to Electromagnetic Compatibility", John Wiley and Sons, Inc, 1992

> M.Blurathi

Signature of BOS Chairperson, ECE

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

Upon completion of the course, the student should be able to:
CO1: Describe the fundamental concepts of computational electromagnetics (K2).
CO2: Explain the fundamental concepts of finite difference methods and boundary conditions (K2)
CO3: Solve simple problems using variational methods (K3)
CO4: Analyze the effect of radiation using method of moments. (K4)
CO5: Analyze the solutions using Finite Element Methods (K4)
CO6: Apply Monte Carlo methods to analyze the potential problems(K3)

Pre-requisites: -

CO/PO Mapping(S/M/W indicates strength of correlation)														
COs	Programme Outcomes(POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	S													S
CO2	S													S
CO3		S	M											S
CO4		S	M											S
CO5		S	M											S
CO6		S	M											M

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II
Assignment
End Semester Examination
INDIRECT
Course-end survey

INTRODUCTION

06 Hours
Review of Electromagnetic Theory, Classification of EM Problems, Theorems, Separation of Variables.
FINITE DIFFERENCE METHODS AND BOUNDARY CONDITIONS
08 Hours
Finite Difference Schemes - Finite Differencing of Parabolic PDEs, Hyperbolic PDEs and Elliptic PDEs, Accuracy and Stability of FD Solutions, Absorbing Boundary Conditions for FDTD

Construction of Functionals from PDEs, Rayleigh-Ritz Method, Weighted Residual Method
M.Bhrathi

Signature of BOS Chairperson, ECE

METHOD OF MOMENTS

Integral Equations, Green's Functions, Applications: Quasi-Static Problems, Scattering Problems, Radiation Problems, EM Absorption in the Human Body.

FINITE ELEMENT METHOD

08 Hours
Solution of Laplace's Equation, Solution of Poisson's Equation, Solution of the Wave Equation, Bandwidth Reduction, Finite-Element Time-Domain Method.

MONTE CARLO METHODS

07 Hours
Generation of Random Numbers and Variables, Evaluation of Error, Numerical Integration, Solution of Potential Problems, Regional Monte Carlo Methods.Case Study: Attenuation Due to Raindrops.
Theory: 45 Tutorial: $0 \quad$ Practical: $0 \quad$ Project: $0 \quad$ Total: $\mathbf{4 5}$ Hours

REFERENCES:

1. Sadiku, M. N. O, "Numerical Techniques in Electromagnetics", CRC Press, 2000.
2. Davidson, D. B, "Computational Electromagnetics for RF and Microwave Engineering", Cambridge University Press, 2005.
3. K.J.Binns, P.J.Lawrenson, C.W Trowbridge, "The analytical and numerical solution of Electric and magnetic fields", John Wiley \& Sons, 1993
4. Nathan Ida, Joao P.A.Bastos, "Electromagnetics and calculation of fields", Springer Verlage, 1992.
5. Karl E. Lonngren, Sava V. Savov, Randy J. Jost, "Fundamentals of Electromagnetics with MATLAB", Second Edition, SciTech Publishing, Inc., 2007.
6. Sullivan, D.M., Electromagnetic Simulation Using the FDTD Method, IEEE Computer Society Press, 2000.

> M.Bhurathi

Signature of BOS Chairperson, ECE

VLSI

M.Bhurathi

U18ECE0041

VLSI TESTING AND TESTABILITY

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Discuss various fault models and fault simulation techniques (K2).
CO2: Examine faults in combinational logic circuits (K3).
CO3: Examine faults in sequential logic circuits (K3).
CO4: Compare various methods for delay tests (K3).
CO5: Explain different testability methods (K2).
CO6: Outline fault diagnosis approaches (K2).

Pre-requisites:

1. U18EC I5202 VLSI and HDL Programming

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		S	M										M	
CO 2		S	M										S	
CO3		S	M										S	
CO 4		S	M										S	
CO5		S											S	
CO6		S											S	

Course Assessment Methods

DIRECT

Continuous Assessment Test I, II
Assignment
End Semester Examination

INDIRECT

Course-end survey

FAULT MODELLING AND SIMULATION

09 Hours
Introduction to Testing - Faults in digital circuits - Modeling of faults - Logical Fault Models - Fault detection - Fault location - Fault dominance - Single stuck fault model and multiple stuck fault model - Logic Simulation - Types of simulation - Delay models - Gate level Event-driven simulation- Fault Simulation TechniquesSerial, Parallel and Deductive

TESTING FOR SINGLE STUCK AT FAULTS

09 Hours
Test Generation algorithms for combinational circuits - Fault oriented ATG - D Algorithm-Examples PODEM - Fault independent ATG - Random Test generation - ATGs for SSFs in sequential circuits - TG using iterative array models- Random Test Generation.

DELAY TEST

09 Hours

Delay test problem - Path delay test - Test generation for Combinational circuits, Number of paths in a circuitTransition faults - Delay test methodologies-Slow clock combinational test, Enhanced scan test, normal scan sequential test, Variable- clock Non-scan sequential test, Rated- clock Non-scan sequential test.

DESIGN FOR TESTABILITY

09 Hours

Testability- Controllability and observability, Ad-hoc design for testability Techniques - Controllability and observability by means of scan registers- Storage cells for scan design- Level sensitive scan design (LSSD)Partial scan using I-Paths - Boundary scan standards.

FAULT DIAGNOSIS

09 Hours

Logical Level Diagnosis - Diagnosis by UUT reduction - Fault Diagnosis for Combinational Circuits - Selfchecking design - System Level Diagnosis.

> | Theory: 45 | Tutorial: $\mathbf{0}$ | Practical: $\mathbf{0}$ | Project: $\mathbf{0}$ | Total: $\mathbf{4 5}$ Hours |
| :--- | :--- | :--- | :--- | :--- |

REFERENCES:

1. Abramovici, M., Brever, A., and Friedman, D., "Digital Systems Testing and Testable Design", Jaico Publishing House, 2002.
2. Michael L Bushnell and Vishwani D Agarwal, "Essentials of Electronic Testing for Digital, Memory and Mixed Signal Circuits", Springer, verlag 2000.
3. Stanley L Hurst "VLSI Testing : Digital and Mixed Analogue Digital Techniques", Institute of Electrical Engineers, 1998
4. Xiaoqing Wen, Cheng Wen Wu and LaungTerng Wang "VLSI Test Principles and Architectures: Design for Testability", Cambridge University Press, 2000
5. Parag K Lala, "Fault Tolerant and Fault Testable Hardware Design" BS Publications, 2002

M.Bhurathi

Signature of BOS Chairperson, ECE

U18ECE0042

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Compare various FPGA Architectures (K2).
CO2: Discuss programming /configuring an FPGA (K2).
CO3: Realize digital system on FPGA (K3).
CO4: Apply appropriate design flow in system design with FPGA (K3).
CO5: Verify, synthesize and implement the design

Pre-requisites:

1. U18EC I5202 VLSI and HDL Programming

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		S											M	
CO2		S	M										S	
CO3			S		S								S	
CO4			S										S	
CO5		S											S	
CO6			S										S	

Course Assessment Methods

DIRECT

Continuous Assessment Test I, II
Assignment
End Semester Examination
INDIRECT
Course-end survey

FPGA ARCHITECTURES

09 Hours
Introduction, Programming Technologies - SRAM, Anti Fuse, E²PROM/Flash Hybrid Flash-SRAM. Fine, medium and Coarse Grained Architectures, Logic Blocks - MUX based, LUT Based. Comparison of LUT, Distributed RAM and SRAM based Logic blocks. Logic Elements, CLBS, LABs, Distributed RAMs and shift registers. Dedicated specialized components in FPGAs, Clock -Clock tree, clock Manager, IO Block - Gigabit Transceivers.

FPGA PROGRAMMING
09 Hours
Anti fuse based FPGAs, SRAM based FPGAS, Using Configuration port, Using JTAG, Using Embedded processor.

FPGA DESIGN

09 Hours
Coding Styles, pipelining and levels of Logic, Asynchronous design practices, clock considerations, Register and Latch consideration, Resource sharing, State Machine encoding, Testing Methodologies.

SYSTEM DESIGN FLOW

09 Hours
Schematic based Design Flow, HDL Based Design Flow, DSP Based Design Flow, Embedded Processor based Design Flow.

SIMULATION, SYNTHESIS AND VERIFICATION

09 Hours
Cycle based and event driven simulation-Logic / HDL synthesis technology- static, statistical and dynamic timing analysis- Verification- formal verification.

Theory: 45
Tutorial: $0 \quad$ Practical: 0
Project: 0
Total: 45 Hours

REFERENCES:

1. Clive Maxfield, "FPGAs: Instant Access", Newnes, 2008.
2. Charles H. Roth, Jr, Lizy Kurian John, "Principles of Digital system Design using VHDL", Cengage Learning India Private Limitted, 2009.
3. Wayne Wolf, "FPGA Based System Design", Prentice Hall, 2004.
4. Michael D. Ciletti, "Advanced Digital Design with the Verilog HDL", Pearson, 2011.
5. Ian Grout, "Digital Systems Design with FPGAs and CPLDs", Elsevier, 2012.
6. Robert Dueck, "Digital design with CPLD applications and VHDL", Thomson, 2004.
7. Bob Zeidman, "Designing with CPLDs and FPGAs", CRC Press, 2002.

> M.Bhirathi

Signature of BOS Chairperson, ECE

U18ECE0043

SYSTEM ON CHIP

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Discuss system architectures and components (K2).
CO2: Outline system level design methodology (K2).
CO3: Compare hardware software co design strategies (K3).
CO4: Illustrate SOC design approach (K2).
CO5: Discuss SOC design implementation tools (K2).
CO6: \quad Summarize SOC testing techniques (K2).

Pre-requisites:

1. U18EC I5202 VLSI and HDL Programming

CO/PO Mapping:

(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak

COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S												S	
CO 2		M	M										S	
CO 3		S	M										S	
CO 4			M										S	
CO5			M										S	
CO6		S											S	

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II
Assignment
End Semester Examination
INDIRECT
Course-end survey

SYSTEM ARCHITECTURE

06 Hours
Introduction to system Architecture, Components of a system, Hardware and Software: Programmability Versus Performance, Processor Architectures, Memory and Addressing, System-Level Interconnection, An Approach for SOC Design, System Architecture and Complexity.

SYSTEM-LEVEL DESIGN

12 Hours
Processor selection-Concepts in Processor Architecture: Instruction set architecture (ISA), elements in Instruction Handing-Robust processors: Vector processor, VLIW, Superscalar, CISC, RISC-Processor evolution: Soft and Firm processors, Custom-Designed processors-IP based design - on - chip memory.

M.Bhurathi

Signature of BOS Chairperson, ECE

SYSTEM-LEVEL INTERCONNECTION

09 Hours
Overview: Interconnect Architecture, On-chip Buses: basic architecture, Bus standards: AMBA, Core Connect, Wishbone, Avalon-Network-on-chip - Architecture - topologies - switching strategies - routing algorithms flow control, quality-of-service - Reconfigurability in communication architectures.

CO-DESIGN CONCEPTS

09 Hours
Nature of hardware \& software- quest for energy efficiency- driving factors for hardware-software co-design-Co-design space-Dualism of Hardware design and Software design - Modeling Abstraction Level- Concurrency and Parallelism- Hardware Software tradeoffs- Introducing Dataflow modeling.

SOC IMPLEMENTATION AND TESTING

09 Hours
Study of Microblaze RISC processor - Real-time operating system (RTOS), peripheral interface and components, High-density FPGAs-Introduction to tools used for SOC design: Xilinx SOC based development kit. Manufacturing test of SOC: Core layer, system layer, application layer-P1500 Wrapper StandardizationSOC Test Automation (STAT).
Theory: 45 Tutorial: $0 \quad$ Practical: $0 \quad$ Project: $0 \quad$ Total: 45 Hours

REFERENCES:

1. Michael J.Flynn, Wayne Luk, "Computer system Design: System-on-Chip", Wiley- India, 2012.
2. Patrick Schaumont "A Practical Introduction to Hardware/Software Co-design", $2{ }^{\text {nd }}$ Edition, Springer, 2012.
3. Lin, Y-L.S. (ed.), "Essential issues in SOC design: designing complex systems-on- chip", Springer, 2006.
4. SudeepPasricha, NikilDutt, "On Chip Communication Architectures: System on Chip Interconnect", Morghan Kaufmann Publishers, 2008.
5. W.H.Wolf, "Computers as Components: Principles of Embedded Computing System Design", Elsevier, 2008.

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Review the concepts of nanoelectronics and scaling (K2).
CO2: Describe the properties of nanoscale structures(K2).
CO3: Compare single electron, SESO and CNT devices (K2).
CO4: \quad Summarize the working of various spin devices (K2).
CO5: Review the working of molecular nanodevices(K2).
CO6: Access the different fabrication techniques (K5).

Pre-requisites: -

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1		M											M	
CO2		M											M	
CO3			M										M	
CO4		M											M	
C05			M										M	
CO6			S										M	

Course Assessment Methods

DIRECT
 Continuous Assessment Test I, II
 Assignment
 End Semester Examination
 INDIRECT
 Course-end survey

NANOELECTRONICS AND SCALING

09 Hours
Introduction to Nanoelectronics - Classical and quantum systems - Current CMOS device technologyInternational Technology Roadmap for Semiconductor projections - Scaling principles - General scaling, Characteristic scale length - Limits to scaling - Quantum mechanics, Atomistic effects, Thermodynamic Effects, Practical considerations - Power constrained scaling limits.

M.Bhurathi

Signature of BOS Chairperson, ECE

Energy subbands and Density of States in nanoscale structures - Electron transport in a Two Dimensional electron gas - Resistance of a ballistic semiconductor - Landauer formula - Transmission probability calculation - Resonant tunnelling effect - Coulomb blockade - Quantization of thermal conductance in ballistic nanostructures.

SINGLE ELECTRON, SESO AND CNT DEVICES
09 Hours
Introduction - Quantum Dot transistor - structure and fabrication - Single Electron and Single Hole Quantum Dot transistor - Artificial atom - Single Electron MOS Memory - structure and fabrication - SESO Transistor - SESO Memory - CNT transistor - CNT based Field Emission devices - CNT based Microwave devices.

SPINTRONICS AND MOLECULAR NANODEVICES

09 Hours
Introduction - Spin filters - Spin diodes - Spin transistors - Spin based optoelectronic devices - Electrical conduction of molecules - Manipulation of single molecules - Molecular motors - Molecular nanoactuators - Molecular electronic devices - Molecular based optic devices.

FABRICATION TECHNIQUES

09 Hours
Optical lithography - Electron beam lithography - X -Ray lithography - Focused Ion beam lithography Nanoimprint lithography - Pulsed laser deposition - Sputter deposition - Chemical Vapour Deposition - Wet and dry etching techniques - Chemical Mechanical Polishing.
Theory: 45 Tutorial: $0 \quad$ Practical: $0 \quad$ Project: $0 \quad$ Total: $\mathbf{4 5}$ Hours

REFERENCES:

1. Mircea Dragoman and Daniela Dragoman, "Nanoelectronics Principles and Devices", Artech house, Boston, 2006.
2. ShunriOda and David Ferry,"Silicon Nanoelectronics", Taylor \& Francis, USA, 2006.
3. W.R.Fahrner,"Nanotechnology and Nanoelectronics: Materials, Devices, Measurement Techniques", Springer (India), New Delhi, 2011.

U18ECE0045

LOW POWER VLSI

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Discuss the sources of power dissipation in CMOS logic design (K2).
CO2: Illustrate low power design and optimization techniques (K2).
CO3: Estimate power at different levels (K2).
CO4: Examine leakage reduction techniques (K3).
CO5: Analyze the effects of voltage scaling (K3)
CO6: Discuss effect of capacitance on power reduction (K2)

Pre-requisites:

1. U18EC I5202 VLSI and HDL Programming

CO/PO Mapping:

(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak

COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		S											S	
CO2		S	M			M	M						S	
CO3		S											S	
CO4		S	M			W	W						S	
CO5		S	M										S	
CO6		S	M			W	W						S	

Course Assessment Methods

DIRECT
 Continuous Assessment Test I, II
 Assignment
 End Semester Examination
 INDIRECT
 Course-end survey

POWER DISSIPATION IN CMOS

08 Hours
Need for low power design, Hierarchy of limits of power - Sources of power consumption - Basic principle of low power design, Degree of freedom.

M.Bhurathi

Signature of BOS Chairperson, ECE

SUPPLY VOLTAGE SCALING

10 Hours
Challenges in supply voltage scaling, Voltage scaling approaches, Static voltage scaling approaches- Device feature size scaling, Architectural level approaches - Parallelism, Pipelining, voltage scaling through optimal transistor sizing, voltage scaling using high level transformations, multi level voltage scaling, Dynamic voltage scaling, Adaptive voltage scaling.

SWITCHED CAPACITANCE MINIMIZATION

12 Hours
Hardware Software Trade-off, Bus Encoding, Use of number system, Architectural level Optimization Techniques, Glitch power, Clock Gating, State encoding, Logic styles, Low power techniques for SRAM and DRAM. Special topics - Adiabatic Switching Circuits Battery-aware Synthesis Variation tolerant design CAD tools for low power synthesis.

LEAKAGE POWER MINIMIZATION

10 Hours
Standby leakage reduction- Fabrication of multiple threshold voltages, Transistor stacking, Variable- thresholdvoltage CMOS (VTCMOS), Multi-threshold-voltage CMOS (MTCMOS), Power gating, Run time leakage reduction- V_{DD} scaling, combining power gating with Dynamic voltage and frequency scaling, multi level V_{DD} scaling, Dual-Vt assignment approach (DTCMOS), dynamic $\mathrm{V}_{\text {th }}$ scaling.

POWER ESTIMATION
05 Hours
Power estimation techniques - Logic level power estimation - Simulation power analysisProbabilistic power analysis.

Theory: 45 Tutorial: $0 \quad$ Practical: $0 \quad$ Project: $0 \quad$ Total: 45 Hours

REFERENCES:

1. K.Roy and S.C. Prasad , "Low Power CMOS VLSI circuit design", Wiley,2000
2. Gary Yeap, "Practical low power digital VLSI design", Kluwer, 2001.
3. Dimitrios Soudris, ChirstianPignet, Costas Goutis, "Designing CMOS Circuits for Low Power", Kluwer,2002
4. J.B. Kuo and J.H Lou, "Low voltage CMOS VLSI Circuits", Wiley 1999.
5. A.P.Chandrakasan and R.W. Broadersen, "Low power digital CMOS design", Kluwer, 1995.
6. Abdellatif Bellaouar, Mohamed.I. Elmasry, "Low power digital VLSI Design", Kluwer, 1995.
7. James B. Kuo, Shin - chia Lin, "Low voltage SOI CMOS VLSI Devices and Circuits", John Wiley and sons, Inc 2001
8. Ajit Pal, "Low-Power VLSI Circuits and Systems", © Springer India 2015.

M.Bhurathi

Signature of BOS Chairperson, ECE

EMBEDDED SYSTEM

M.Blurathi

U18ECE0051

INDUSTRIAL ROBOTICS

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Explain various configuration of robots and compute degrees of freedom for given links and joints (K2).
CO2: Identify the positions of manipulator using forward and inverse kinematic methods (K3).
CO3: Design industrial manipulators by selecting appropriate sensor and actuators (K4).
CO4: Apply motion planning algorithms for trajectory planning (K3).
CO5: Develop codes to program robots using open source software and standard programming tools (K3).

Pre-requisites: -

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	M	M												
CO2	S	S												M
CO3	S	S	S											M
CO4	S			M										M
CO5			S		S									M
C06	M	M												M

Course Assessment Methods

DIRECT

Continuous Assessment Test I, II
Assignment (Theory Component)
End Semester Examination
INDIRECT
Course-end survey

M.Bhurathi

Signature of BOS Chairperson, ECE

INTRODUCTION

03 Hours
Introduction to industrial robotics - classification of robots, Laws of robotics, robot anatomy, degrees of freedom, links, joints, robot applications, ethics of robots, Introduction to robot programming.

KINEMATICS OF ROBOTS

09 Hours
Rotation matrices, Different coordinates- Cartesian, cylindrical, spherical, articulated, RPY, Euler angles, Denavit-Hartenberg notation, solving simple forward kinematics problem
Inverse kinematics- inverse orientation, inverse locations, Singularities, Jacobian

DESIGN OF INDUSTRIAL MANIPULATORS

12 Hours
Different configuration of manipulators, workspace design, end effectors and different types of gripper, types and classification of motors, Electronic drives and control, sensors and feedback systems.

MOTION CONTROL AND TRAJECTORY PLANNING

12 Hours
Open loop vs closed loop control, PID Control, Differential motion, force, torque, electronic control using microprocessor and micro controllers, errors in motion control.
Basics of trajectory planning, Cartesian space trajectories, graph based planning - grassfire algorithm, Djikstra's algorithm, artificial potential field, sampling methods.

ROBOT PROGRAMMING

09 Hours
Robot programming: Introduction; On-line programming: Manual input, lead through programming, Teach dependant programming.
Introduction to Robot Operating System, reinforcement learning for robotic manipulators, Simple robotic simulations in gazebo simulator.

| Theory: 45 | Tutorial: 0 | Practical: 0 | Project: 0 | Total: $\mathbf{4 5}$ Hours |
| :--- | :--- | :--- | :--- | :--- | :--- |

REFERENCES:

1. Saeed B. Niku, "Introduction to Robotics", Prentice Hall of India, 2nd Edition 2010.
2. Mikell P. Groover, "Industrial Robots - Technology, Programming and Applications", McGraw Hill, New York, 2008.
3. Deb. S.R., "Robotics Technology and flexible Automation", John Wiley, USA 1992.

> M.Bhirathi

Signature of BOS Chairperson, ECE

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Distinguish low cost and computer controlled automation (K4).
CO2: Design circuits using components of fluid power system (K3).
CO3: Describe the hardware used industry including PLCs and SoCs (K2).
CO4: Develop codes for PLCs using standard methods (K3).
CO5: Select appropriate industrial communication protocol for a given application (K3).
CO6: Develop applications for SCADA and DCS (K3).

Pre-requisites: -

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S												M	
CO2		M												
CO3	S												M	
CO4			S	M									M	
CO5	S		S											
CO6			S											

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II
Assignment (Theory Component)
End Semester Examination
INDIRECT
Course-end survey

THEORY COMPONENT CONTENTS

INTRODUCTION

05 Hours
The need for automation in industries, evolution of automation strategy, Introduction to fluid power, Types of fluid power systems, application and advantages, Introduction to automation tools - PLC, Sensors, switches and timer modules, DCS, SCADA, Introduction to IEC 61131.

FLUID POWER SYSTEMS

09 Hours
Pumps and compressor - Types and working principles, types of valves - direction control valve, pressure valve, servo valve - flow control valve - accumulators, types of actuators, Electro Hydraulic circuits, electro pneumatic circuits, sensors - proximity sensor, magnetic reed switch, flow measurement, velocity and position sensors, light sensors, strain sensors, temperature sensors, Relays and latches.

AUTOMATION HARDWARE MODULES AND PROGRAMMING

11Hours
PLC Hardware - input and output modules, CPU - design, memory design and types, Human machine interfaces, PLC wiring, PLC Programming - types of PLC programming, addressing, ladder logic programming - program control instructions, arithmetic instruction, timers and counters programming.
Embedded systems in industrial automation - SoC substitutes for PLC, Challenges and limitation of implementation, OOP in automation, need for packaging and standards.

INDUSTRIAL COMMUNICATION

11Hours
Definition of protocol, Introduction to Open System Interconnection (OSI) model, Communication standard (RS232, RS485), Modbus (ASCII/RTU), HART Protocol, Foundation Field bus H1, Comparison of HART, Foundation Field bus, Device net, Profibus, Control net, Industrial Ethernet.
Introduction to Industry 4.0, Industrial IoT- block diagram, application, simple case studies.

SCADA AND DISTRIBUTED CONTROL SYSTEMS

09 Hours
SCADA Concept of SCADA systems, Programming techniques for: Creation of pages, Sequencing of pages, Creating graphics \& animation, Dynamos programming with variables, Trending, Historical data storage \& Reporting, Alarm management, reporting of events and parameters, Comparison of different SCADA packages. DCS introduction, Various function Blocks, DCS components/block diagram, DCS Architecture of different makes, comparison of these architectures with automation pyramid, DCS specification, latest trend and developments.
Large scale data handling - basics of big data analysis, introduction to classification techniques, simple data analysis using weka/ MATLAB software.

| Theory: 45 | Tutorial: 0 | Practical: 0 | Project: 0 | Total: 45 Hours |
| :--- | :--- | :--- | :--- | :--- | :--- |

REFERENCES:

1. Frank D. Petruzella, "Programmable Logic Controllers", McGraw-Hill Companies, $3^{\text {rd }}$ Edition, March 2013.
2. Lukas, "Distributed Control systems", Van Nostrand Reinfold Company, 1995.
3. Anthony Esposito, "Fluid Power with Applications", Pearson Education Inc., $7^{\text {th }}$ Edition 2009.
4. Majumdar S.R., "Pneumatic systems - Principles and maintenance", Tata McGraw-Hill, 2009.
5. James A. Sullivan, "Fluid Power: Theory and Applications", C.H.I.P.S, $4^{\text {th }}$ edition, 2007.

M.Bhurathi

Signature of BOS Chairperson, ECE

U18ECE0053

VIRTUAL INSTRUMENTATION

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Construct basic instruments using LABVIEW (K3).
CO2: Select data acquisition cards for analog and digital data (K3).
CO3: Analyze the given images using different image processing tools (K4).
CO4: Build a machine vision system (K3).
CO5: Design real time control systems using LABVIEW (K6).
CO6: Describe the PC hardware and operating system for virtual instrumentation (K2).

Pre-requisites:-

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO1		S	M		S									
CO 2		S			S									
CO3		S			S									
CO4		S	M	M	S									
CO5		S		S	S									
CO6		S			S									

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II
Assignment (Theory Component)
End Semester Examination
INDIRECT
Course-end survey

INTRODUCTION

Virtual Instrumentation- Comparison with Traditional Instrumentation - Definition and Flexibility Architecture - software for Virtual Instrumentation - Modular Programming, Loop and Charts, Arrays, Clusters and Graphs, Case and Sequence Structures, Formula nodes, String and File Input / Output.

DATA ACQUISITION

9 Hours

A/D and D/A converters, Plug-in Analog Input / Output cards - Digital Input and Output Cards, OrganizationPerforming analog input and analog output - Scanning multiple analog channels - Issues involved in selection of Data acquisition cards - Data acquisition modules with serial communication - Design of digital voltmeter with transducer input-Timers and Counters.

M.Bhurathi

Signature of BOS Chairperson, ECE

IMAQ VISION

9 Hours
Vision basics- Image processing and analysis, particle analysis - Machine vision, Hardware modules, Building machine vision system - Image processing tools, Acquisition and implementation using NI- Driver softwareApplications.

REAL TIME CONTROL

9 Hours

Designs using VI Software - ON/OFF controller - Proportional controller - Modeling and basic control of level and reactor processes - Case studies on development of HMI, SCADA in VI.

HARWARE \& OPERATING SYSTEM OVERVIEW
9 Hours
PC architecture, operating system requirements, PC based instrumentation, analog and digital interfaces- PXI and SCXI main frame - modular instruments-Real time I/O and compact RIO-Introduction to NI-ELVIS - Transducers - power, speed and timing considerations.

Theory: 45 Tutorial: $0 \quad$ Practical: $0 \quad$ Project: $0 \quad$ Total: $\mathbf{0} 5$ Hours

REFERENCES:

1. Jovitha Jerome, "Virtual Instrumentation using LABVIEW", PHI Learning, New Delhi, 2010.
2. Gary W. Johnson and Richard Jennings, "LabVIEW Graphical Programming", 4th edition, McGraw-Hill Professional Publishing, 2011.
3. Barry Paton, "Sensor, transducers and Lab view", Prentice Hall of India 2000.
4. Buchanan, W. "Computer buses", CRC Press 2000
5. Lisa K Wells, "Lab view for Everyone", Prentice Hall of India, 1996

REAL TIME EMBEDDED SYSTEMS

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
C01: Compare the hardware and software architectures of Embedded Systems (K2).
CO2: Classify the I/O interface and protocols for an embedded system (K2).
CO3: Interpret the concepts of a real time operating system (K2).
CO4: Apply the concepts of Embedded programming (K3).
CO5: Develop steps to create an embedded system application integrating hardware and software (K3).

Pre-requisites:

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	P05	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	M	W											M	
CO2	M	S											M	
CO3		M	M										M	
CO4		S		W									M	
CO5		M	M		W								M	

Course Assessment Methods

DIRECT

Continuous Assessment Test I, II
Assignment (Theory Component)
End Semester Examination
INDIRECT
Course-end survey

ARCHITECTURE OF EMBEDDED SYSTEMS

Definition and classification- Qverview of processors-Hardware units in an Embedded systems-Software embedded into a system- Exemplary Embedded systems- Embedded systems on a chip-The use of VLSI designed circuits.

DEVICES AND BUSES FOR DEVICES NETWORK

9 Hours
I/O Devices- Types and Examples-Synchronous, Iso-synchronous and Asynchronous Communications from Serial Devices - Examples of Internal Serial-Communication Devices UART and HDLC-Parallel Device Ports - Sophisticated interfacing features in Devices Ports-Timer and Counting Devices - Serial bus communication protocols: $\mathrm{I}^{2} \mathrm{C}, ‘$ USB','CAN'andAdvanced I/O serial high speed buses- Parallel bus device protocols : ISA, PCI,PCI/X , ARM bus and Advanced parallel high speed buses.

EMBEDDED PROGRAMMING IN C, C++
9 Hours
C Program Elements, Macros and functions - Use of Pointers - NULL Pointers - Use of Function Calls - Multiple function calls in a Cyclic Order in the Main Function Pointers - Function Queues and Interrupt Service Routines Queues Pointers - Concepts of EMBEDDED PROGRAMMING in C++ - Objected Oriented Programming Embedded Programming in C++ - C Program compilers - Optimization of memory codes.

REAL-TIME OPERATING SYSTEM CONCEPTS
9 Hours
Architecture of the Kernel-task and task scheduler-Interrupt Service Routines-Semaphores-Mutex- MailboxesMessage Queues-Event Registers-Pipes-Signals-Timers-Memory Management - Priority Inversion ProblemStudy of $\mu \mathrm{C} / \mathrm{OS}$-II RTOS.

HARDWARE/SOFTWARE INTEGRATION
9 Hours
Compiler - Cross compiler -. Emulator, Simulators - Host and target machines - Linkers/locators for embedded software - Getting embedded software into the target system and testing on host machine.
Case study of Embedded systems like Digital camera, Smart card, Flight simulation and control.
Theory: 45 Tutorial: 0 Practical: 0 Project: $0 \quad$ Total: 45 Hours

REFERENCES:

1. RajKamal "Embedded Systems Architecture Programming and Design", $2^{\text {nd }}$ Edition, TMH, 2008
2. David E.Simon "An Embedded Software Primer", Pearson Education, $4^{\text {th }}$ Reprint, 2007.
3. Steve Heath, "Embedded Systems Design", $2^{\text {nd }}$ Edition., Elsevier Publications, 2006.
4. Wayne Wolf, "Computers as Components; Principles of Embedded Computing System Design", Harcourt India, Morgan Kaufman Publishers, First Indian Reprint, 2005.
5. Frank Vahid and Tony Gwasrgie, "Embedded system Design", John Wiley and Sons, 2002.
6. Daniel. W Lewis, "Fundamentals of Embedded Software" Pearson Education 2001.
7. Wayne Wolf, "Computers as Components; Principles of Embedded Computing System Design", Harcourt India, Morgan Kaufman Publishers, First Indian Reprint, 2005.

U18ECE0055

AUTOMOTIVE ELECTRONICS

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Describe various mechanical systems in an automobile (K2).
CO2: Illustrate different types of electronic systems in an automobile (K3).
CO3: Outline the various stages of Integrated development environment to design an embedded system (K3).
CO4: Explain the various embedded systems used in automotive applications (K2).
CO5: Compare Vehicle Communication Protocols (K3).

Pre-requisites: -

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S										M			M
CO 2	S	M		M									M	
CO 3		S			M		M						M	
CO 4	S	M											M	
CO5	S													S

Course Assessment Methods

DIRECT

Continuous Assessment Test I, II
Assignment (Theory Component)
End Semester Examination
INDIRECT
Course-end survey

AUTOMOTIVE MECHANICAL SYSTEMS: VEHICLE SYSTEMS

ELECTRONICS IN AUTOMOTIVE SYSTEMS

09 Hours
Need for Electronics in Automotive Systems: Performance (Speed, Power, and Torque), Control (Emission, Fuel Economy, Drivability, and Safety) \& Legislation (Environmental legislation for pollution \& Safety Norms). Overview of Vehicle Electronic Systems: Basic electrical components and their operation in an automobile: Power train subsystem (Starting systems, Charging systems - Ignition systems - Electronic fuel control), Chassis subsystem (ABS, TCS, \& ESP) - Comfort and safety subsystems (Night Vision, Airbags, Seatbelt Tensioners, Cruise Control-Lane-departure-warning, Parking).

INTEGRATED DEVELOPMENT ENVIRONMENT

09 Hours
Introduction to Integrated development environment (IDE) - Getting started, HW / SW configuration (boot service, Host - target interaction) - Booting reconfiguration - Managing IDE - Target servers, agents, Cross development, debugging - Introduction to an IDE for lab board - RTOS, PC based debugger.

EMBEDDED SYSTEM IN AUTOMOTIVE APPLICATIONS

09 Hours

Engine management systems - Gasoline / Diesel systems, various sensors used in system - Electronic transmission control - Vehicle safety system - Electronic control of braking and traction - Body electronics Infotainment systems - Navigation systems - System level tests - Software calibration using engine and vehicle dynamometers - Environmental tests for Electronic Control Unit - Application of Control elements and control methodology in Automotive System.

EMBEDDED SYSTEM COMMUNICATION PROTOCOLS

09 Hours

Introduction to control networking - Communication protocols in embedded systems - SPI, I2C, USB - Vehicle communication protocols - Introduction to CAN, LIN, FLEXRAY, MOST, KWP2000.

Theory: 45	Tutorial: 0	Practical: 0	Project: 0	Total: $\mathbf{4 5}$ Hours

REFERENCES:

1. Joerg Schaeuffele, Thomas Zurawka, "Automotive Software Engineering Principles, Processes, Methods and Tools", SAE International, 2005.
2. BOSCH Automotive Handbook, $6^{\text {th }}$ Edition, 2014.
3. Jean J.Labrosse, " μ C/OS-II Real Time Kernel,CMP Books", $2^{\text {nd }}$ edition, 2002.
4. Raj kamal,"Embedded systems Architecture, programming and design",McGraw Hill Education, $3^{\text {rd }}$ Edition, July 2017.
5. Denton. T, "Automobile Electrical and Electronic Systems", $4^{\text {th }}$ edition, 2012.
6. William B. Ribbens, "Understanding Automotive Electronics",Butterworth-Heinemann publication, $5^{\text {th }}$ Edition, 1998.
7. Ronald K. Jurgen, "Automotive Electronics Handbook",McGraw Hill Publications, 1999.
8. Nicholas Navit, "Automotive Embedded System Handbook", CRC Press, Taylor and Francis Group, 2009.
9. Fu K.S. Gonzaleaz R.C. and Lee C.S.G., "Robotics Control Sensing, Vision and Intelligence" McGraw Hill International Editions, 1987.

U18ECE0056

MULTICORE ARCHITECTURE AND PROGRAMMING FOR EMBEDDED SYSTEMS

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to

CO1:	Analyse the single core and multicore features of Embedded Systems (K2).
CO2:	Interpret the aspects of multicore architecture for embedded system (K2).
CO3:	Implement scheduling process in multicore architecture (K2).
CO4:	Apply the concepts of concurrency and parallelism (K3).
CO5:	Analyse multicore timing using appropriate tools (K3).

Pre-requisites:

1. U18ECI5202 Computer Architecture and Microprocessors
2. U18ECI6203 VLSI and HDL Programming

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	M	W											M	
CO2	M	S											M	
CO3		M	M										M	
CO4		S		W									M	
CO5		M	M		W								M	

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II
Assignment (Theory Component)
End Semester Examination
INDIRECT
Course-end survey

INTRODUCTION TO MULTICORE

4 Hours

Drivers for Multicore Architectures: Low power, Performance/Throughput and need for memory bandwidth - Limits of single core computing - Moore's law - Limits to Instruction Level Parallelism (ILP) - Power and heat dissipation issue - Increased amount of data to process - Evolution from traditional System-On-Chip (SoC) to MPSoCs (Multi processor System-On-Chips) - Need for Multicore controllers.

MULTICORE ARCHITECTURE

12 Hours

Dependent Multicore software and hardware architectures - Multicore hardware architecture overview: Heterogeneous and Homogenous Multicore hardware - Communication between hardware processing elements: Point-to-point connections, Shared buses, On-chip cross bar, Network-On-Chip (NoC) - Memory access in

> M.Bhurathi

Signature of BOS Chairperson, ECE

Multicore architectures: Symmetric Multi-Processing (SMP), Asymmetric Multi processing (NUMA) Multicore architecture specific to applications - Example Multicore hardware used in Automotive - Infineon Tricore series, ST devices.

SCHEDULING CONCEPTS AND OS ASPECTS

12 Hours
Scheduling - Static and Dynamic Scheduling - Scheduling algorithms: Rate Monotonic Scheduling (RMS), Fixed priority pre-emptive scheduling, Round robin scheduling, Earliest deadline first, First come First serve Process and threads - Need of pre-emption - Types of Multicore Scheduling: Global, Semi-partitioned and Partitioned - OS for General purpose and Real time systems - Scheduling in Single core vs Scheduling in Multicore - Timing Jitter.

CONCURRENCY AND PARALLELISM

12 Hours

Amdahl's law - Need for Parallelism - Concurrency Fundamentals - Data parallelism, Functional Parallelism, loop Parallelism - Dependencies - Producer consumer - Need for Synchronization, Loop dependencies-Shared resources - Caching aspects - Problems with no synchronization - Synchronization primitives - Semaphore, Mutex, spinlocks, Test and Set, Compare and swap-Synchronization related issues and how to avoid them: Data races, Livelocks, Deadlock, Non-atomic operations.

ADVANCED MULTICORE TOPICS

5 Hours

Multicore timing analysis - Timing simulation: WCET (Worst Case Execution Time) analysis - Schedulability analysis - Additional challenges in Multicore - Tools used in automotive: Timing architect, ChronSIM, Sym TA/S- Deterministic behavior - Logical Execution Time (LET).
Theory: 45 Tutorial: $0 \quad$ Practical: $0 \quad$ Project: $0 \quad$ Total: 45 Hours

REFERENCES:

1. Bryon Moyer, "Real world Multicore embedded systems", 1 st Edition, Newnes, 2013.
2. Michael Barr, "Programming Embedded Systems: With C and GNU Development Tools", $2^{\text {nd }}$ Edition, O'Reilly Media, 2006.

References on the internet for Multicore timing analysis:

3. Why is timing analysis important?: http://embedded.cs.unisaarland.de/publications/EnablingCompositionalityRTNS2016.pdf

Multicore timing simulation solutions:

4. $\mathrm{https}: / / \mathrm{www}$. vector.com/int/en/events/global-de-en/webinars/2020/timing-analysis-formulticoreecus/
5. https://www.rapitasystems.com/multicore-timing
6. https://www.inchron.com/tool-suite/chronsim/
7. https://www.absint.com/ait/symtas.htm
8. https://www.danlawinc.com/wp-content/uploads/MC-BR-006-Multicore-Timing-Analysis-Solution-For-Aerospace-v3.pdf
Logical Execution Time (LET)
9. https://ieeexplore.ieee.org/document/5577967

U18ECE0057

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
$\mathbf{3}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3}$

Course Outcomes

After successful completion of this course, the students should be able to
CO1: Explain the applications of HMI's in various domains K2
CO2: Differentiate various communication protocols used in HMI Development K2
CO3: Describe car multimedia systems and the hardware, software evolution K2
CO4: Summarize various tools used for HMI development for automobile application K2
CO5: Explain the importance of user experience with a case study. K2
CO6: Use various graphic tools and advanced techniques to create UI's K3

Pre-requisite

Nil

Course Assessment methods:

Direct

1. Continuous Assessment Test I, II
2. Open book test; Cooperative learning report, Assignment; Journal paper review, Group Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc. (as applicable)
3. End Semester Examination

INTRODUCTION TO HMI AND AUTOMOTIVE ELECTRONICS

6 Hours
HMI use cases for Automotive, Industrial, Consumer Electronics, Medical and Aero - ECUs within car and their functionalities. Communication protocols for ECUs. (CAN, LIN, Most, FlexRay, Ethernet)

CAR MULTIMEDIA

9 Hours
Instrument Cluster, In Vehicle Infotainment, Professional Systems, Rear Seat Entertainment - Evolution of car multimedia, Overview, H/W, S/W and mechanics

AUTOMOTIVE HMI

10 Hours
HMI Architecture \& Concepts, H/W Platform (Intel, Qualcomm, i.MX6), S/W Platform (OS, Graphics libraries and Connectivity), Services (Navigation, map Engine, Alexa), Application Framework (Qt, Android sdk, CGISTUDIO, IAR SYSTEMS), HMI domain specific applications - HMI application components, Widgets, Framework, Framework model and state machine.

UX AND UI

10 Hours
Introduction to UX design - stages, theory, Design thinking, UX Case Studies, Comparison of UX and UI, Interaction concepts, Graphic design with introduction to tools (Adobe Photoshop, Adobe XD, Blender) - Asset Design - Overview only, Guidelines and norms, 2D/3D rendering.

TRENDS AND ADVANCED TOPICS

10 Hours
Voice, Gesture, Vision, sensor based UI controls, Haptics, New technologies (eyegaze, gesture, dual display), SPI - android auto, car play, Smart City and Public Transport, ride sharing, personal, Virtual Reality, Augmented Reality and Mixed Reality, UI Analytics (Usage patterns), Debugging, Performance Profiling.

Theory: $\mathbf{4 5}$ Hours
Total Hours: 45

REFERENCES:

1. Shuo Gao, Shuo Yan, Hang Zhao, Arokia Nathan, "Touch-Based Human-Machine Interaction: Principles and Applications", Springer Nature Switzerland AG; 1st edition,2021.
2. Robert Wells, "Unity 2020 By Example: A project-based guide to building 2D, 3D, augmented reality, and virtual reality games from scratch", Packt Publishing Limited, 2020.
3. Ryan Cohen, Tao Wang, "GUI Design for Android Apps", Apress, Berkeley, CA, 2014.

M.Blurathi

U18ECE0058

Advanced HMI

Course Outcomes

After successful completion of this course, the students should be able to

CO1: Summarize HMI architecture and its subcomponents
CO2: Develop real time automotive applications using tools such as Unity and Qt.
K3
CO3: Develop simple HMI using Android and Web app development tools K3
CO4: Perform HMI testing and validation for the developed system

Pre-requisite

Nil

CO/PO Mapping														
(S/M/W indicates strength of correlation)									S-Strong, M-Medium, W-Weak					
COs	Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	M	W												M
CO2	M	S												M
CO3		M	M											M
CO4		S		M	M									M

Course Assessment methods:

Direct	Indirect
1. Continuous Assessment Test I, II	Course end survey
2. Open book test; Cooperative learning report,	
Assignment; Journal paper review, Group	
Presentation, Project report, Poster preparation,	
Prototype or Product Demonstration etc. (as	
applicable)	
3. End Semester Examination	

M.Bhrathi

Signature of BOS Chairperson, ECE

INTRODUCTION

HMI Architecture \& Concepts, HMI Subcomponents

GAMING ADVANCED 3D DEVELOPMENT

9 Hours
Introduction to game development and advanced 3D development, Game Engine, Unity 3D installation -code editor - camera - game objects and transform - Renderer - lighting - UI - Scripting, Realtime 3D in Automotive world, HMI Development.

QT

8 Hours
History of QT, Why QT? Supported Platforms, QT Installation, QT Creator, QT Modules, Signals and slots, Event Processing.

ANDROID AND WEB APP DEVELOPENT
8 Hours
Android, PWA, HTML CSS JavaScript (Front End Frameworks)

HMI TESTING AND AUTOMATION

3 Hours
Introduction, elements of HMI, Challenges of HMI Testing, Verification and Validation
Theory: $\mathbf{3 0}$ Hours
Practical: 15 Hours
Total Hours: 45

REFERENCES:

1. Shuo Gao, Shuo Yan, Hang Zhao, Arokia Nathan, "Touch-Based Human-Machine Interaction: Principles and Applications", Springer Nature Switzerland AG; $1^{\text {st }}$ Edition, 2021.
2. Robert Wells, "Unity 2020 By Example: A project-based guide to building 2D, 3D, augmented reality, and virtual reality games from scratch", Packt Publishing Limited, 2020.
3. Lee Zhi Eng, "Qt5 C++ GUI Programming Cookbook: Practical recipes for building crossplatform GUI applications, widgets, and animations with Qt 5, $2^{\text {nd }}$ Edition, Packt Publishing Limited, 2019.
4. Karim Yaghmour, "Embedded Android: Porting, Extending, and Customizing", First Edition, Shroff/O'Reilly, 2013
5. Louis J.Williams, "Basic Programming Android for beginners Handbook", IT Campus Academy, March 2016
6. Julie C. Meloni, "Sams Teach Yourself HTML, CSS, and JavaScript All in One", Pearson Education, 2011.
7. Arnon Axelrod, "Complete Guide to Test Automation by Arnon Axelrod", Apress, September 2018.
8. Dean Alan Hume, "Progressive Web Apps", Manning Publisher, December 2017.

LIST OF EXPERIMENT:

1. Setting up of Raspberry Pi with capacitive touch screen
2. Setting up the Unity environment.
3. Working with UI controls of Unity.
4. Qt Installation and configuration.
5. Creating Dialogs and Main windows using Qt programming.
6. Working with building blocks of practical web design using HTML
7. Webpage design with CSS and Form validation using JavaScript.

GENERAL STUDIES

M.Blurathi

Signature of BOS Chairperson, ECE

U18ECE0061 PRODUCT DESIGN AND DEVELOPMENT

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Apply concepts of product development and outline product planning process..
CO2: Apply relative importance of customer needs in establishing product specifications
CO3: Identify concept generation activities and summarize the methodology involved in concept selection and testing.
CO4: Outline supply chain considerations in product architecture and understand the industrial design process.
CO5: Apply design for manufacturing concepts in estimating manufacturing costs.
CO6: Apply principles of prototyping in product development economics and highlight importance of managing projects

Pre-requisites:-

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	M		M		M					W				
CO2			M											
CO3	M		M											
CO4			S			W				M	M			
CO5			S		M	M								

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II
Assignment (Theory Component)
End Semester Examination
INDIRECT
Course-end survey

INTRODUCTION - DEVELOPMENT PROCESSES AND ORGANIZATIONS -PRODUCT PLANNING

Characteristics of successful product development to Design and develop products, duration and cost of product development, the challenges of product development.
A generic development process, concept development: the front-end process, adapting the generic product development process, the AMF development process, product development organizations, the AMF organization. The product planning process identify opportunities.
Evaluate and prioritize projects, allocate resources and plan timing, complete pre project planning, reflect all the results and the process.

M.Bhurathi

Signature of BOS Chairperson, ECE

IDENTIFYING CUSTOMER NEEDS - PRODUCT SPECIFICATIONS

9 Hours
Gathering raw data from customers, interpreting raw data in terms of customer needs, organizing the needs into a hierarchy, establishing the relative importance of the needs and reflecting on the results and the process. Specifications, establish specifications, establishing target specifications setting the final specifications.

CONCEPT GENERATION - CONCEPT SELECTION - CONCEPT TESTING
 9 Hours

The activities of concept generation clarify the problem search externally, search internally, explore systematically, reflect on the results and the process, Overview of methodology, concept screening, concept scoring, caveats. Purpose of concept test, choosing a survey population and a survey format, communicate the concept, measuring customer response, interpreting the result, reflecting on the results and the process.

PRODUCT ARCHITECTURE - INDUSTRIAL DESIGN - DESIGN FOR MANUFACTURING
 9 Hours

Meaning of product architecture, implications of the architecture, establishing the architecture, variety and supply chain considerations, platform planning, related system level design issues.
Assessing the need for industrial design, the impact of industrial design, industrial design process, managing the industrial design process, is assessing the quality of industrial design. Definition, estimation of manufacturing cost, reducing the cost of components, assembly, supporting production, impact of DFM on other factors.

PROTOTYPING - PRODUCT DEVELOPMENT ECONOMICS - MANAGING 9 Hours PROJECTS

Prototyping basics, principles of prototyping, technologies, planning for prototypes, Elements of economic analysis, base case financial mode, Sensitive analysis, project trade-offs, influence of qualitative factors on project success, qualitative analysis. Understanding and representing task, baseline project planning, accelerating projects, project execution, postmortem project evaluation.
Theory: 45 Tutorial: 0 Practical: $0 \quad$ Project: $0 \quad$ Total: 45 Hours

REFERENCES:

1. Karl Ulrich,T, Steven Eppinger, D, "Product Design and Development", McGraw Hill, 2015.
2. Chitale, AK, Gupta, RC, "Product Design and Manufacturing" PHI, 2013.
3. Timjones, "New Product Development: An Introduction to a multifunctional process", Butterworth-Heinemann, 1997.
4. Geoffery Boothroyd, Peter Dewhurst and Winston Knight A "Product Design for Manufacture and Assembly", CRC Press, 2011.

U18ECE0062

TOTAL QUALITY MANAGEMENT

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Apply \& analyze quality concepts and philosophies of TQM.
CO2: Apply concepts of continuous improvement
CO3: Apply TQM concepts to enhance customer satisfaction and deal with customer related aspects
CO4: Apply and analyze the quality tools, management tools and statistical fundamentals to improve quality
CO5: Apply and analyze the TQM tools as a means to improve quality
CO6: Understand quality systems, procedures for its implementation, documentation and auditing

Pre-requisites:-

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	P01	PO2	PO3	PO4	P05	P06	P07	PO8	P09	P010	P011	PO12	PSO1	PSO2
CO1		M		M							M			
CO2		M		M							M			
CO3		M		M							M			
CO4					S						M			
CO5		M			S						M			

Course Assessment Methods

DIRECT

Continuous Assessment Test I, II
Assignment (Theory Component)
End Semester Examination
INDIRECT
Course-end survey

INTRODUCTION

Definition of Quality, Dimensions of Quality, Quality Costs, Top Management Commitment, Quality Council, Quality Statements, Barriers to TQM Implementation, Contributions of Deming, Juran and Crosby, Team Balancing.

TQM PRINCIPLES

9 Hours

Customer satisfaction - Customer Perception of Quality, Customer Complaints, Service Quality, Customer Retention, Continuous Process Improvement,5S, Kaizen, Just-In-Time and TPS.

Signature of BOS Chairperson, ECE

STATISTICAL PROCESS CONTROL
9 Hours
The seven tools of quality, New seven Management tools, Statistical Fundamentals - Measures of central Tendency and Dispersion, Population and Sample, Normal Curve, Control Charts for variables and attributes, Concept of six sigma.

TQM TOOLS

9 Hours
Quality Policy Deployment (QPD), Quality Function Deployment (QFD), Benchmarking, Taguchi Quality Loss Function, Total Productive Maintenance (TPM), FMEA

QUALITY SYSTEMS

9 Hours

Need for ISO 9000 and Other Quality Systems, ISO 9001:2008 Quality System - Elements, Implementation of Quality System, Documentation, Quality Auditing, ISO 14001:2004
Theory: 45 Tutorial: 0 Practical: $0 \quad$ Project: $0 \quad$ Total: 45 Hours

REFERENCES:

1. Dale H.Besterfield, "Total Quality Management", Pearson Education.
2. James R.Evans\& William M.Lindsay, "The Management and Control of Quality", South- Western (Thomson Learning), 2008.
3. Oakland.J.S. "Total Quality Management", Butterworth - Hcinemann Ltd., Oxford
4. Bhaskar S. "Total Quality Management", (2007-revised edition) Anuradha Agencies, Chennai
5. Narayana V. and Sreenivasan, N.S. "Quality Management - Concepts and Tasks", NewAge International, 2007.
6. Zeiri, "Total Quality Management for Engineers", Wood Head Publishers.
7. Feigenbaum.A.V "Total Quality Management", McGraw Hill Publishers.

Signature of BOS Chairperson, ECE

U18ECE0063

OPERATIONS RESEARCH

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Apply linear programming model and assignment model to domain specific situations
CO2: Analyze the various methods under transportation model and apply the model for testing the closeness of their results to optimal result
CO3: Apply the concepts of PERT and CPM for decision making and optimally managing Projects
CO4: Analyze the various replacement and sequencing models and apply them for arriving at optimal decisions.
CO5: Analyze and apply appropriate inventory techniques in domain specific situations.
CO6: Analyze and apply appropriate queuing theories in domain specific situations

Pre-requisites:-

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S		S										
CO2	S	S		S										
CO3	S	S		S							S			
CO4	S	S		S										
CO5	S	S		S										

Course Assessment Methods

DIRECT

Continuous Assessment Test I, II
Assignment (Theory Component)
End Semester Examination
INDIRECT
Course-end survey

LINEAR MODEL
9 Hours
The phases of OR study, formation of an L.P model, graphical solution, simplex algorithm, artificial variables technique (Big M method, two phase method), duality in simplex.

TRANSPORTATION AND ASSIGNMENT PROBLEM

9 Hours
Transportation model, Initial solution by North West corner method, least Cost method, VAM. Optimality test, MODI method and stepping stone method. Assignment model, formulation, balanced and unbalanced assignment problems

PROJECT MANAGEMENT BY PERT \& CPM
9 Hours
Basic terminologies, Constructing a project network, Scheduling computations - PERT - CPM, Resource smoothening, Resource leveling, PERT Cost

REPLACEMENT AND SEQUENCING MODELS

9 Hours
Replacement policies, Replacement of items that deteriorate with time (value of money not changing with time), Replacement of items that deteriorate with time (Value of money changing with time) - Replacement of items that fail suddenly (individual and group replacement policies).
Sequencing models- n job on 2 machines -n jobs on 3 machines -n jobs on m machines, Traveling salesman problem

INVENTORY AND QUEUING THEORY

9 Hours
Variables in inventory problems, EOQ, deterministic inventory models, order quantity with price break, techniques in inventory management.
Queuing system and its structure, Kendall's notation, Common queuing models - M/M/1: FCFS/ $\infty / \infty-\mathrm{M} / \mathrm{M} / 1$: FCFS/n/ $\infty-$ M/M/C: FCFS/ $\infty / \infty-$ M/M/1: FCFS/n/m

Theory: 45 Tutorial: 0 Practical: $0 \quad$ Project: $0 \quad$ Total: 45 Hours

REFERENCES:

1. Taha H.A., "Operation Research", Pearson Education.
2. Hira and Gupta "Introduction to Operations Research", S.Chand and Co.2002.
3. Hira and Gupta "Problems in Operations Research", S.Chand and Co.2008.
4. Wagner, "Operations Research", Prentice Hall of India, 2000.
5. S.Bhaskar, "Operations Research", Anuradha Agencies, Second Edition, 2004.

Signature of BOS Chairperson, ECE

U18ECE0064

PROFESSIONAL ETHICS

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Analyze the various concepts and theories of engineering ethics
CO2: Apply concepts of ethics and analyze its impact on society
CO3: Apply and analyze the concept of safety and risk in the light of engineering ethics
CO4: Analyze and evaluate the rights \& responsibilities of engineers
CO5: Analyze the ethical issues engineers are to consider while operating globally
CO6: Applying and analyzing the responsibilities of engineers in management and leadership roles

Pre-requisites:-

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	P01	PO2	PO3	PO4	P05	PO6	P07	PO8	P09	PO10	P011	PO12	PSO1	PSO2
CO1						M		S						
CO2						M		S				M		
CO3						M		S						
CO4						M		S						
C05						M		S						
						M		S						

Course Assessment Methods

DIRECT

Continuous Assessment Test I, II
Assignment (Theory Component)
End Semester Examination

INDIRECT

Course-end survey

ENGINEERING ETHICS AND THEORIES

Definition, Moral issues, Types of inquiry, Morality and issues of morality, Kohlberg and Gilligan's theories, consensus and controversy, Professional and professionalism, moral reasoning and ethical theories, virtues, professional responsibility, integrity, self respect, duty ethics, ethical rights, self interest, egos, moral obligations.

SOCIAL ETHICS AND ENGINEERING AS SOCIAL EXPERIMENTATION
Engineering as social experimentation, codes of ethics, Legal aspects of social ethics, the challenger case study, Engineers duty to society and environment.
M.BLurathi

Signature of BOS Chairperson, ECE

Safety and risk - assessment of safety and risk - risk benefit analysis and reducing risk - the Three Mile Island and Chernobyl case studies. Bhopal gas tragedy.

RESPONSIBILITIES AND RIGHTS OF ENGINEERS
9 Hours
Collegiality and loyalty - respect for authority - collective bargaining - confidentiality - conflicts of interest occupational crime - professional rights - employee rights - Intellectual Property Rights (IPR) - discrimination.

GLOBAL ISSUES AND ENGINEERS AS MANAGERS, CONSULTANTS AND LEADERS

Multinational Corporations - Environmental ethics - computer ethics - weapons development - engineers as managers - consulting engineers - engineers as expert witnesses and advisors - moral leadership - Engineers as trend setters for global values.
Theory: 45 Tutorial: 0 Practical: $0 \quad$ Project: $0 \quad$ Total: 45 Hours

REFERENCES:

1. Mike Martin and Roland Schinzinger, "Ethics in Engineering". (2005) McGraw-Hill, NewYork.
2. John R. Boatright, "Ethics and the Conduct of Business", (2003) Pearson Education, New Delhi.
3. Bhaskar S. "Professional Ethics and Human Values", (2005) Anuradha Agencies, Chennai.
4. Charles D. Fleddermann, "Engineering Ethics", 2004 (Indian Reprint) Pearson Education /Prentice Hall, New Jersey.
5. Charles E. Harris, Michael S. Protchard and Michael J Rabins, "Engineering Ethics - Concepts and cases", 2000 (Indian Reprint now available) Wadsworth Thompson Learning, United States.

Signature of BOS Chairperson, ECE

U18ECE0065

ENGINEERING ECONOMICS AND FINANCIAL MANAGEMENT

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
3	0	0	0	3

Course Outcomes (COs):

After successful completion of this course, the students should be able to
C01: Evaluate the economic theories, Cost concepts and pricing policies
CO2: Analyze the market structures and integration concepts
CO3: Apply the concepts of national income and understand the functions of banks and concepts of globalization
CO4: Apply the concepts of financial management for project appraisal and working capital management
CO5: Understand accounting systems
CO6: Analyze financial statements using ratio analysis

Pre-requisites:-

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		M				M					M			
CO2				M		M					M			
CO3						M					M			
CO4				M							S			
CO5											S			
		M		M							S			

Course Assessment Methods

DIRECT
Continuous Assessment Test I, II
Assignment (Theory Component)
End Semester Examination
INDIRECT
Course-end survey

ECONOMICS, COST AND PRICING CONCEPTS

9 Hours
Economic theories - Demand analysis - Determinants of demand - Demand forecasting - Supply - Actual Cost and opportunity Cost - Incremental Cost and sunk Cost - Fixed and variable Cost - Marginal Costing- Total Cost - Elements of Cost - Cost curves - Breakeven point and breakeven chart - Limitations of break- even chart - Interpretation of break-even chart- Contribution - P/V-ratio, profit-volume ratio or relationship- Price fixation - Pricing policies - Pricing methods.

CONCEPTS ON FIRMS AND MANUFACTURING PRACTICES
9 Hours
Firm - Industry - Market - Market structure - Diversification - Vertical integration - Merger - Horizontal integration.

NATIONAL INCOME, MONEY AND BANKING, ECONOMIC ENVIRONMENT
9 Hours
National income concepts - GNP - NNP - Methods of measuring national income - Inflation - Deflation - Kinds of money - Value of money - Functions of bank - Types of bank - Economic liberalization - Privatization Globalization.

CONCEPTS OF FINANCIAL MANAGEMENT
9 Hours
Financial management - Scope - Objectives - Time value of money - Methods of appraising project profitability - Sources of finance - Working capital and management of working capital.

ACCOUNTING SYSTEM, STATEMENT AND FINANCIAL ANALYSIS
9 Hours
Accounting system - Systems of book-keeping - Journal - Ledger - Trail balance - Financial statements - Ratio analysis - Types of ratios - Significance - Limitations.
Theory: 45 Tutorial: 0 Practical: $0 \quad$ Project: $0 \quad$ Total: 45 Hours

REFERENCES:

1. Prasanna Chandra, - "Financial Management (Theory \& Practice)", TMH
2. Weston \& Brigham, - "Essentials of Managerial Finance"
3. Pandey, I. M., "Financial Management", Eleventh edition, Vikas Publishing house.
4. Fundamentals of Financial Management- James C. Van Horne.
5. Bhaskar S. "Engineering Economics and Financial Accounting", (2003) Anuradha Agencies, Chennai
6. "Financial Management \& Policy" -James C. Van Horne
7. "Management Accounting \& Financial Management"- M. Y. Khan \& P. K. Jain
8. "Management Accounting Principles \& Practice" -P. Saravanavel
9. Ramachandra Aryasri.A., and Ramana Murthy V.V.,"Engineering Economics \&Financial Accounting"-Tata McGraw Hill, New Delhi, 2006.
10. Varshney R.L., and Maheswari K.L.,"Managerial Economics" - Sultan Chand \& Sons, New Delhi, 2001
11. Samvelson and Nordhaus,"Economics"-Tata McGraw Hill, New Delhi, 2002

Signature of BOS Chairperson, ECE

ONE CREDIT COURSE

ADVANCE SYSTEM DESIGN USING 16BIT ULTRA LOW POWER MICROCONTROLLERS

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
1	0	0	0	1

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Explain functions of various architectural components of microcontroller from Texas Instruments MSP430 16 bit energy efficient microcontrollers (K2).
CO2: Interface the display \& Memory card (K3).
CO3: Interface various sensors and actuators to microcontrollers and work with various applications (K6).

Pre-requisites:

1. U18ECI5202- Computer Architecture and Microprocessors
2.U18ECI6202-Microcontrollers

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S												M	
CO 2			S	M	S							S	M	
CO3			S	M	S		S					S	S	

Course Assessment methods:

Direct	Indirect
1. Internal Tests	
2. Assignment	

OVERVIEW

3 Hours
Review of 16Bit Ultra Low Power Microcontrollers, Introduction to Advanced architecture of 16Bit Ultra Low Power Microcontrollers, clock module configuration, various frequency settings, Introduction to IDE, compiler and linker file configuration, interfacing the IDE and HW development board.

DISPLAY INTERFACE

3 Hours

Types of LCD Display, Advantages of LCD Display, and Introduction to Dot matrix display, Character Formation, Pixel density, Implementation for 102x64 dot-matrixes LCD Interface.

SENSOR

3 Hours

Introduction to sensors, Types of Sensors, Need for Integration of sensors, Analog Front end Introduction, Introduction to Temperature Sensor, Implementation of Temperature Sensors, Introduction to Capacitive Touch Sense, Advantages of using capacitive touch sensors. Interfacing with 16Bit Ultra Low Power Microcontrollers.
M.Blurathi

Signature of BOS Chairperson, ECE

Introduction to memory, various types of memory, Introduction to SD Card, Advantages of using SD card, Types of SD Cards, Interfacing SD Card with 16bit ultra low power controller

SERIAL INTERFACE
3 Hours
Types of Serial Interface, Advantages of using serial interface, Comparisons between various serial communication standards, Introduction to USB, Types of USB Interfacing Standards, Modes of Interfacing.
Theory: 15 Tutorial: 0 Practical: $0 \quad$ Project: $0 \quad$ Total: 15 Hours

REFERENCES:

1. John H. Davies, MSP430 Microcontroller Basics, 2013.
2. Chris Nagy, Embedded Systems Design Using the TI MSP430 Series, 2013.
3. MSP430 Teach ROM CD.
4. Datasheet, Technical Documents and Application Notes: http://www.ti.com/product/msp430F5529.

ADVANCED MOTOR CONTROL APPLICATION USING 32 BIT REAL TIME CONTROLLERS

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
1	0	0	0	1

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Demonstrate the function of various architectural components of TI C2000 Real time controller (K3).
CO2: Interface various sensors and actuators to Real time microcontrollers and work with various Digital signal controllers applications (K6).
CO3: Design the efficient motor driver circuits and algorithm in digital signal processing domain (K6).

Pre-requisites:

1. U18ECI5202- Computer Architecture and Microprocessors
2.U18ECI6202-Microcontrollers

Course Assessment methods:

Direct	Indirect
1. Internal Tests 2. Assignment	Course end survey

CO/PO Mapping:

(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak

COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		S											M	
CO2			S	M								M	S	
CO3			S	M		S	M					S	S	

OVERVIEW

3 Hours
Overview of INSTASPIN, Advantages of using INTASPIN, Architecture of INSTASPIN, Introduction to MotorWare, Types of MotorWare, Advantages of using MotorWare, Implementation of INSTASPIN in Microcontrollers, overview of INSTASPIN based microcontrollers

BLDC MOTOR

4 Hours
Introduction to Motors, Various Types of Motors, Introduction to BLDC Motors, Commutation of BLDC motors, Sensor less BLDC Motors, Control of BLDC motors.

Introduction to motor drivers, Types of Motor Drivers, Advantages of using Motor Drivers, Implementation of Motor Drives, Design consideration for motor drivers usage of Digital Signal Controllers in motor control.

REAL TIME IMPLEMENTATION

5 Hours

Design Consideration for implementing Motor Control Application, Hardware Flow, Software Flow, and Implementation of INSTASPIN in software, Coding Standards, Real time control of BLDC Motors

Theory: 15 Tutorial: $0 \quad$ Practical: $0 \quad$ Project: $0 \quad$ Total: 15 Hours

REFERENCES:

1. Hamid Toliyat and Steven Campbell, DSP BASED ELECTROMECHANICAL MOTION CONTROL, CRC Press.
2. Sen M. Kuo and Woon-Seng Gan, DIGITAL SIGNAL PROCESSORS - ARCHITECTURES, IMPLEMENTATIONS, AND APPLICATIONS, Prentice Hall.
3. Chang-liang Xia, Permanent Magnet Brushless DC Motor Drives and Controls, WILEY Publications.
4. C2000 Teaching ROM CD.
5. Datasheet, Technical Documents and Application Notes: http://www.ti.com/product/tms320f28335.
6. User Guide and Software Codes: http://www.ti.com/tool/tmdsprex28335.
7. Code Composer Studio v6:-
http://processors.wiki.ti.com/index.php/Category:Code_Composer_Studio_v6.

Signature of BOS Chairperson, ECE

ENERGY EFFICIENT MICROCONTROLLERS AND ITS APPLICATIONS

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
1	0	0	0	1

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Explain the function of various architectural components of microcontroller from Texas Instruments MSP 43016 bit energy efficient microcontrollers (K3).
CO2: Interface various Digital modules and Timers for a given application (K6).
CO3: Interface various sensors and actuators to microcontrollers and work with various applications (K6).

Pre-requisites:

1. U18ECI5202- Computer Architecture and Microprocessors
2.U18ECI6202-Microcontrollers

CO/PO Mapping:

(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak

COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	M											S	
CO2			S	M									S	
CO3			S	M			S					S	S	

Course Assessment methods:

Direct	Indirect
1. 2. 2.ernal Tests Assignment	Course end survey

OVERVIEW

3 Hours
Introduction to CPU Architecture, Basic Block Diagram, Clock Module Overview, clock module configuration, various frequency settings, Introduction to IDE, compiler and linker file configuration, Interfacing the IDE and HW development board.

DIGITAL PERIPHERALS

3 Hours
Introduction to digital peripherals, Introduction to Input / Output Ports, Modes of operation, Configuration of Digital ports as Input and Output, Introduction to Low Power Modes. Advantages of using Low Power modes, Various Low power mode of operations and settings.

Signature of BOS Chairperson, ECE

TIMERS

5 Hours
Introduction to Timers, Various types of timers in Microcontrollers, Advantages of using timers in Embedded systems, Introduction to Watchdog timer, configuration of watch dog timer and implementation, General Purpose Timer Module introduction, Application and settings and implementation of timers.

ANALOG MODULES
4 Hours
Introduction to ADC, Need for ADC, Various ADC Modes Of operations, Timing for data conversion, ADC Conversion calculation, Configuration of ADC, DMA Transfer for results.

Theory: 15 Tutorial: $0 \quad$ Practical: $0 \quad$ Project: $0 \quad$ Total: $\mathbf{1 5}$ Hours

REFERENCES:

1. John H. Davies, MSP430 Microcontroller Basics, 2013.
2. Chris Nagy, Embedded Systems Design Using the TI MSP430 Series, 2013 MSP430 Teach ROM CD.
3. Datasheet, Technical Documents and Application Notes: http://www.ti.com/product/msp430g2553.

Signature of BOS Chairperson, ECE

INTERNET OF THINGS (IoT) USING CC3200

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
1	0	0	0	1

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Explain the architectural blocks in 32 bit microcontrollers and deploy them as suitable solution (K3).
CO2: Demonstrate available embedded networking mechanisms and work with IoT (Internet of Things) (K5).
CO3: Explain cloud computing and handling the data to stream to the cloud (K4).
Pre-requisites: 1. U18ECI5202- Computer Architecture and Microprocessors 2.U18ECI6202-Microcontrollers

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		S	M										S	S
CO2		S	M			M						S	S	S
CO3		S	M			M						S	S	S

Course Assessment methods:

Direct	Indirect
1. 2. 2.ernal Tests Assignment	Course end survey

OVERVIEW

3 Hours
Introduction to Internet of Things (IoT). Review of CC3200 core and its architecture, Introduction to advanced ARM Cortex M4 architecture, Peripherals overview, User API, Power challenges with IoT, CC3200 Simple link applications, Starting with Code Composer Studio V6.

SIMPLELINK WI-FI CPU

2 Hours

Introduction to CC3200 Simple link Wi-Fi MCU, hardware Functional Block Diagram, Embedded Software Overview, TI-RTOS support for CC3200 Simple link, TI-RTOS configuration for CC3200 Simple link, Simple link Wi-Fi certification, Power Modes.

Signature of BOS Chairperson, ECE

WLAN CONNECTION

2 Hours
Introduction to WLAN, WLAN parameters, AP/STATION modes and its Security types, Socket connection, Typical commends and event flow, WLAN AP and WLAN STATION configuration settings.

SOFTWARES

2 Hours
Introduction to Pin-Mux Tool, Configuration with Pin-Mux Tools, Introduction to Uniflash, Debugging with Uniflash Tools, HTML page Download.

HANDS-ON WITH CC3200
6 Hours
Brief introduction to CC3200 Peripherals, OUT OF BOX demo, Home and Industrial automation and control, Creating project0, programming with ADC, Programming with GPIO, enabling interrupt, Introduction to serial interface, Overview of sensor interface with CC3200, TI RTOS configuration in CCS workspace, Client severer model basics, Simple Email application, Emailing an sensor (ADC) value.

Theory: 15 Tutorial: $0 \quad$ Practical: $0 \quad$ Project: $0 \quad$ Total: 15 Hours

REFERENCES:

1. Jonathan W Valvano, Introduction to ARM(r) Cortex -M Microcontrollers,2012.
2. Andrew Sloss, Dominic Symes, Chris Wright, ARM System Developer's Guide,2004.
3. Datasheet, Technical Documents and Application Notes_ http://www.ti.com/product/CC3200
M.Blurathi

Signature of BOS Chairperson, ECE

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
1	0	0	0	1

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Explain OSEK communication structures (K2).
CO2: Demonstrate CAN BUS protocols(K3).
CO3: Explain about on-vehicle and off-vehicle communications (K2).

Pre-requisites:

1. U18ECI5203-Communication Networks

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S		M						S					M
CO2	S		M						S					M
CO 3	S		M						S					M

Course Assessment methods:

Direct	Indirect
1. Internal Tests 2. Assignment	Course end survey

BASICS AUTOMOTIVE ELECTRONICS

6 Hours
Automotive Embedded System, Sensors, Actuators, Power train Management System (Gasoline, Diesel, Hybrid), Active Safety System -- Electronic Stability Program (Antilock Braking System, Antislip Regulation), Passive Safety Systems - Air Bags, Seatbelt Tensioners, Steering System, Night vision, Park Assistance, Cruise Control, Speed Limiter \& System Testing. Vehicle Network Architecture

OSEK - COMMUNICATION STRUCTURE

3 Hours

Introduction - Message Transmission, Message Reception, Deadline Monitoring, Notification, Communication System Management, Functional Model of the interaction Layer, Network Management (Direct and Indirect). Impacts upon OS, COM and the data link layer

CAN BASICS
3 Hours
CAN BUS: Overview, CAN Bus Overview, The Development of CAN, CAN BUS and the OSI Model , CANBUS Physical Layer, Message Oriented Transmission Protocol ,Message Format, Bus Arbitration, Basic Bit Encoding\& CAN Frames.

ON VEHICLE AND OFF VEHICLE
3 Hours
Introduction to On Vehicle Communication and Off Vehicle Communications, Need for Services, Introduction to Universal Diagnostic Services, In depth understanding of Diagnostic Services.

Theory: 15 Tutorial: $0 \quad$ Practical: $0 \quad$ Project: $0 \quad$ Total: $\mathbf{1 5}$ Hours

REFERENCES:

1. Wolfhard Lawrenz, "CAN System Engineering-From Theory to Practical Applications", Second Edition, Springer-Verlag London 2013.

URBAN MINING AND ELECTRONIC RESOURCE FROM

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
1	0	0	0	1

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Understand the effect of E-waste on people's health and environment (K2).
CO2: Explore the value in e-waste and the ways to extract them to support local economy(K3).
CO3: Develop sustainable e-waste recovery and recycling business models (K2).

Pre-requisites:

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						S	S	S						
CO2						S	S	S						
CO3						S	S	S						

Course Assessment methods:

Direct	Indirect
1. 2. Asternal Tests	Course end survey

OVERVIEW

2 Hours
Introduction on E-waste management - Circular Economy-Ideology-Recycling of E-waste

E-WASTE/WEEE - EXPOSURE PATHWAY OF POLLUTANTS

3 Hours
Types of E-waste - Composition of E-waste -Challenges- Pathway of pollutants from E-waste- Informal and formal processing of E-waste

LEGISLATION AND POLICY ON E-WASTE MANAGEMENT

3 Hours
E-waste management rules 2011, 2016 - Amendments of E-waste rules 2017 and 2018 - Implementation of rules- Case studies - Stakeholders-Basel convention, Rotterdam, and Stockholm Conventions

VULNERABILITY OF E-WASTE
3 Hours
Life cycle analysis- IT asset management - Importance of data processing - Recycling techniques and disposal methods.

GREEN BUSINESS

4 Hours
Current trends on global and Indian market - Key aspects on flow of e-waste - Opportunities on E-waste- Unique initiatives around the world- Circular economy
Theory: 15 Tutorial: $0 \quad$ Practical: $0 \quad$ Project: $0 \quad$ Total: 15 Hours

REFERENCES:

1. Joon, V.; Shahrawat, R.; Kapahi, M., The Emerging Environmental and Public Health Problem of Electronic Waste in India. Journal of Health and Pollution 2017, 7 (15), 1-7.
2. Ghosh, B.; Ghosh, M.; Parhi, P.; Mukherjee, P.; Mishra, B., Waste printed circuit boards recycling: an extensive assessment of current status. Journal of Cleaner Production 2015, 94, 5-19.
3. Mary, J. S.; Meenambal, T., Inventorisation of E-Waste and Developing a Policy-Bulk Consumer Perspective. Procedia Environmental Sciences 2016, 35, 643-655.
4. Amit Jain et al., 2006, e-waste assessment methodology and validation in India
5. Anwesha Borthakur et al., 2013, Generation of electronic waste in India: Current scenario, dilemmas and Stakeholders,
6. Dharna Tiwari et al.,2014, International Journal of Environmental Research and Development, India
7. DIT, 2003, Environmental management for Information Technology industry in India, Dept. of Information Technology, Govt. of India
8. E-waste management rules 2016, E- Waste (Management) Amendment Rules 2017 and 2018 Ewaste (management and handling) rules 2011.

U18ECC0506

HANDS-ON COURSE IN DIGITAL SYSTEM DESIGN USING HDL

\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{J}	\mathbf{C}
0	0	2	0	1

Course Outcomes (COs):

After successful completion of this course, the students should be able to
CO1: Demonstrate the steps involved in the VLSI design flow (K3).
CO2: Design advanced digital systems (K6).
CO3: Implement HDL in FPGA kits (K6).

Pre-requisites:

1. U18CSI1202 - Problem Solving and Programming using C
2. U18ECI4202-Analog Electronics and Integrated Circuits
3. U18ECI 3203 - Digital System Design

CO/PO Mapping: (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	PROGRAMME OUTCOMES													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			S	M	S								S	
CO2			S	M	S	S	S					S	S	
CO3			S	M	S	M						S	S	
CO4			S	M	S								S	
CO5			S	M	S	S	S					S	S	

Course Assessment methods:

Direct	Indirect
1. 2. 2.ernal Tests Assignment	Course end survey

LAB EXPERIMENTS

DESIGN AND IMPLEMENTATION OF

1. LED \& LCD.

FPGA pin configuration using Plan ahead Industrial standard HDL Coding development
Gate Level Simulation
Implementation in FPGA kit
Output analyzed with testing and verification

Signature of BOS Chairperson, ECE

2. 7 Segment Display.

FPGA pin configuration using Plan ahead
Industrial standard HDL Coding development
Gate Level Simulation
Implementation in FPGA kit
Output analyzed with testing and verification

3. Analog to Digital Converter.

FPGA pin configuration using Plan ahead Industrial standard HDL Coding development
Gate Level Simulation
Implementation in FPGA kit
Output analyzed with testing and verification
4. Communication protocol Intellectual Properties (SPI, I2C, UART).

FPGA pin configuration using Plan ahead
Industrial standard HDL Coding development
Gate Level Simulation
Implementation in FPGA kit
Output analyzed with testing and verification
5. Communication Devices (Bluetooth, IR, RFID, Zig Bee, GSM, GPS).

FPGA pin configuration using Plan ahead
Industrial standard HDL Coding development
Gate Level Simulation
Implementation in FPGA kit
Output analyzed with testing and verification
6. Timer \& PWM.

FPGA pin configuration using Plan ahead
Industrial standard HDL Coding development
Gate Level Simulation
Implementation in FPGA kit
Output analyzed with testing and verification
Theory: 0 Tutorial: $0 \quad$ Practical: $60 \quad$ Project: $0 \quad$ Total: 60 Hours

REFERENCES:

1. Douglas A. Pucknell, K. Eshragian, "Basic VLSI Design", Third edition, PHI, 2009
2. Neil.H.E. Weste, Kamaran Eshraghian, "Principles of CMOS VLSI Design", Second Edition, Addison Wesley Publications, 2002
3. Samir Palnitkar, "Verilog HDL-Guide to Digital design and synthesis", Second Edition Pearson Education, 2009
4. Wayne Wolf, "Modern VLSI Design", Pearson Education, 2003

Signature of BOS Chairperson, ECE

