KUMARAGURU COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University, Chennai)

COIMBATORE – 641049

REGULATIONS 2018

SYLLABUS

1st to 8thSemesters

BE MECHATRONICS ENGINEERING

DEPARTMENT OF MECHATRONICS ENGINEERING

VISION

To achieve academic and industrial excellence in industrial automation research and innovative product development driven by mechatronics systems.

MISSION

- Impart the right blend of knowledge and skills to students and enable them to apply it in real life situations.
- Motivate the students towards interdisciplinary research to cater to the local and global needs.
- Achieve innovation in developing industrial products with social responsibility.

PROGRAM EDUCATIONAL OBJECTIVES(PEOs)

The Program Educational Objectives of Mechatronics Engineering Undergraduate Program are to prepare the students:

- **I.** To develop innovative and sustainable products with multidisciplinary Engineering expertise.
- **II.** To solve complex engineering problems by applying mechanical, electrical and computer knowledge and engage in lifelong learning in their profession
- **III.** To work or pursue higher education in multicultural, multilingual and multinational environment with competent oral and written communication.
- **IV.** To lead and contribute in a team entrusted with professional, social and ethical responsibilities.

PROGRAM OUTCOMES(POs)

Graduates of the Mechatronics Engineering Undergraduate Program should have the ability to:

PO1: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES(PSOs)

Graduates of the Mechatronics Engineering Undergraduate Program will have the ability to:

PSO1. Design and develop Mechatronics systems to solve the complex engineering.

problem by integrating electronics, mechanical and control systems.

PSO2. Apply the engineering knowledge to conduct investigations of complex engineering problem. related to instrumentation, control, automation, robotics and provide solutions.

KUMARAGURU COLLEGE OF TECHNOLOGY

COIMBATORE - 641 049

REGULATIONS 2018

B.E. MECHATRONICS ENGINEERING

CURRICULUM

		D								
S.No	Course code	Course Title	Course Mode	СТ	L	L T P J		J	С	Pre-requisite
1	U18MAI1201	J18MAI1201 Linear Algebra and Calculus Embedded - BS 3 0 2 0 Theory & Lab		4	-					
2	U18CHI1201	Engineering Chemistry	Embedded - Theory & Lab	BS	3	0	2	0	4	-
3	U18ENI1201	Fundamentals of Communication- I	Embedded - Theory & Lab	HS	2	2 0 2 0		3	-	
4	U18MEI1201	Engineering Graphics	Embedded - Theory & Lab	ES	2	0	2	0	3	-
5	U18CSI1202	Problem solving and Programming using C	Embedded - Theory & Lab	ES	2	0	2	0	3	-
6 U18INI1600 Engineering Clinic I Practical and Project ES 0 0 4 2 3										-
7										
Total Credits										
Total Contact Hours/week										1

5. Signature of BOS chairman, MCE

S.No	Course code	Course Title	Course Mode	СТ	CT L T		Р	J	С	Pre-requisite
1	U18MAI2201	Advanced Calculus and Laplace Transforms	Embedded - Theory & Lab	BS	3	0	2	0	4	U18MAI12 01
2	U18PHI2201	Engineering Physics	Embedded - Theory & Lab	BS	3	0	2	0	4	-
3	U18ENI2201	Fundamentals of Communication-II	Embedded - Theory & Lab	HS	2	0	2	0	3	-
4	U18MET2003	Engineering Mechanics	Theory	ES	3	0	0	0	3	-
5	U18CSI2201	Python Programming	Embedded - Theory & Lab	ES	2	0	2	0	3	-
6	Practical and ES		3	-						
7 U18VEP2502 Interpersonal Values Workshop HS I										
Total Credits									20 27	
Total Contact Hours/week										

S.No	Course code	Course Title	Course Mode	СТ	L	L T P J		С	Pre-requisite		
1	U18MAT3101	Partial Differential Equations and TransformsTheoryBS3100		4	-						
2	U18MCI3201	CI3201Electronic Devices and CircuitsEmbedded - Theory & LabES30204		4	-						
3	U18MCI3202	Electrical Machines	Embedded - Theory & Lab	PC	3	3 0 2 0 4			4	-	
4	U18MCT3103	Mechanics of solids	Theory	ES	3	1	0	0	4	-	
5	U18MCT3104	Fluid Mechanics and Thermal Sciences	Theory	ES	3	1	0	0	4	-	
6	U18INI3600	Engineering Clinic III	Practical and Project	ES	0 0 4 2 3 -						
7	7 U18VEP3503 Family Values Workshop HS										
Total Credits											
	Total Contact Hours/week										

Semester IV												
S.No	Course code	Course Title	Course Mode	СТ	L	L T P J		С	Pre-requisite			
1	U18MAT4101	Numerical Methods and Probability	Theory	BS	3	1	0	0	4	-		
2	U18MCI4201	Hydraulics and Pneumatics	Embedded - Theory & Lab	PC	3	3 0 2 0		4	-			
3	U18MCI4202	Sensors and Instrumentat ion	Embedded - Theory & Lab	PC	3	0	2	0	4	-		
4	U18MCT4103	Digital Electronics and Microprocessor	Theory	PC	3	1	0	0	4	U18MCI32 01		
5	U18MCT4104	Theory of Machines	Theory	PC	3	1	0	0	4	-		
6	U18INI4600	Engineering Clinic IV	Practical and Project	ES	0	0	4	2	3	-		
7 U18CHT4000 Environmental Science and Engineering Theory												
8 U18VEP4504 Professional Values Workshop HS												
Total Credits 2												
Total Contact Hours/week												

	Semester V												
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre-requisite			
1	U18MCI5201	Industrial Electronics and drives	Embedded - Theory & Lab	PC	3	0	2	0	4	U18MCI3202			
2	U18MCI5202	Manufacturing Technology	Embedded - Theory & Lab	PC	2	0	2	0	3	-			
3	U18MCI5203	Programmable logic controller	Embedded - Theory & Lab	PC	3	0	2	0	4	-			
4	U18MCT5004	Control Engineering	Theory	PC	3	0	0	0	3	-			
5	U18MCT5105	Design of Machine Elements	Theory	PC	3	1	0	0	4	U18MCT3103			

6	U18MC00**	Open Elective I	Theory	OE	3	0	0	0	3	-
7	U18INI5600	Engineering (linic v	Practical and Project	ES	0	0	4	2	3	-
8	8 U18VEP5505 Social Values Workshop HS									
Total Credits									24	
	Total Contact Hours/week									

		Pre-requisite								
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	1 re-requisite
1	U18MCI6201	Computer aided Manufacturing	Embedded - Theory & Lab	PC	3	0	2	0	4	U18MCI5202
2	U18MCI6202	Robotics Engineering	Embedded - Theory & Lab	PC	3	0	2	0	4	-
3	U18MCI6203	Microcontroller and Embedded Systems	Embedded - Theory & Lab	PC	3	0	2	0	3	U18MCT4103
4	U18MCE00**	Professional Elective I	Theory	PE	3	0	0	0	3	-
5	U18MCE00**	Professional Elective II	Theory	HS	3	0	0	0	3	-
6	U18MCO0***	Open Elective II	Theory	OE	3	0	0	0	3	-
7	U18VEP6506	National Values	es Workshop HS							
8	U18INT6000									
	•	20								
		23								

Semester VII												
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С	Pre-requisite		
1	U18MBT7001	Engineering Economics and Financial Management	Theory	HS	3	0	0	0	3	-		
2	U18MCT7001	Mobile Robotics	Theory	PC	3	0	0	0	3	-		
3	U18MCT7002	Image Processing and Computer Vision	Theory	PC	3	0	0	0	3	-		
4	U18MCE00**	Professional Elective III	Theory	PE	3	0	0	0	3	-		
5	U18MCE00**	Professional Elective IV	Theory	PE	3	0	0	0	3	-		

6	U18MCP7701	Project – Phase I	Project	PW	0	0	0	6	3		
7	U18VEP7507	Global Values	Workshop	HS							
	Total Credits 18										
Total Contact Hours/week 21											
Semester VIII											
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С		
1	1 U18MCP8701 Project – Phase II Project PW 0 0 0 24 12										
Total Credits 12											
Total Contact Hours/week 24											
Total Credits 160											

Saul Signature of BOS chairman, MCE

	Programme Electives											
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С			
		Mechatronics Sy	stems									
1.	U18MCE0001	Automotive Electronics	Theory	PE	3	0	0	0	3			
2.	U18MCE0002	Condition Monitoring	Theory	PE	3	0	0	0	3			
3.	U18MCE0003	Micro Electro Mechanical Systems	Theory	PE	3	0	0	0	3			
	Computational Intelligence											
4.	U18MCE0004	Artificial Intelligence and Machine Learning	Theory	PE	3	0	0	0	3			
5.	U18MCE0005	Database Management System	Theory	PE	3	0	0	0	3			
6.	U18MCE0006	Soft Computing	Theory	PE	3	0	0	0	3			
7.	U18MCE0014	Underwater Robotics	Theory	PE	3	0	0	0	3			
		Design and Manuf	acturing									
8.	U18MCE0007	Industrial IOT	Theory	PE	3	0	0	0	3			
9.	U18MCE0008	Statistical Quality Control	Theory	PE	3	0	0	0	3			
10.	U18MCE0009	Composite and Smart Materials	Theory	PE	3	0	0	0	3			
11.	U18MCE0010	Additive Manufacturing	Theory	PE	3	0	0	0	3			
12.	U18MCE0016	Finite Element Analysis	Theory	PE	3	0	0	0	3			
A		Automation	1									
13.	U18MCE0011	Design of material handling systems	Theory	PE	3	0	0	0	3			
14.	U18MCE0012	Design for manufacturing and Assembly	Theory	PE	3	0	0	0	3			
15.	U18MCE0013	Precision manufacturing	Theory	PE	3	0	0	0	3			
16.	U18MCE0015	Operation Research	Theory	PE	3	0	0	0	3			
17.	U18MCE0017	Maintenance Engineering	Theory	PE	3	0	0	0	3			
18.	U18MCE0018	Medical Mechatronics	Theory	PE	3	0	0	0	3			
		Open Electiv										
S.No	Course code	Course Title	Course Mode	СТ	L	Т	Р	J	С			
1.	U18MC00001	Robotics for Engineers	Theory	OE	3	0	0	0	3			
2.	U18MC00002	Automation in Agriculture	Theory	OE	2	0	1	0	3			
3.	U18MC00005	Mechanics in Cricket	Theory	OE	3	0	0	0	3			
4.	U18MC00006	Low Cost Automation	Theory	OE	3	0	0	0	3			
5.	U18MC00007	Magics and Mechanics	Theory	OE	2	0	1	0	3			

SEMESTER I

LINEAR ALGEBRA A	AND CALCULUS
------------------	--------------

L	Т	Р	J	С
3	0	2	0	4

(Common to All branches- 2019 batch onwards)

Course Outcomes

U18MAI1201

After successful completion of this course, the students should be able to

CO1:	Identify eigenvalues and eigenvectors, apply Cayley Hamilton theorem to Matrix Manipulation
	and apply orthogonal diagonalization to convert quadratic form to canonical form.
CO2:	Apply suitable techniques of differentiation and integration to various functions and identify the
	maxima and minima of functions of one variable.
CO3 :	Solve first order ordinary differential equations and apply them to certain physical situations
CO4:	Solve higher order ordinary differential equations arising in real world situations.
CO5:	Evaluate the total derivative of a function, expand the given function as series and locate the
	maximum and minimum for multivariate functions.
CO6:	Determine Rank, Inverse, Eigenvalues, Eigenvectors of the given matrix, solve Differential equations
	and locate Maxima-Minima of the function using MATLAB

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes(POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO1	S	S			М				М	М		М	М	М
CO2	S	S			М				М	М		М	М	М
CO3	S	S			М				М	М		М	М	М
CO4	S	S			М				М	Μ		М	М	М
CO5	S	S			М				М	М		М	М	М
CO6	S	S			М				М	М		М	М	М

5 Signature of BOS chairman, MCE

DIRECT	INDIREC	CT					
 Report, Assignment; Journal Paper Review, Group Presentation, Project Report, Poster Preparation, Prototype orProduct Demonstration etc (asapplicable) (Theorycomponent) Pre/Post - Experiment Test/Viva; Experimental Report for each Experiment (labComponent) Model Examination (labcomponent) End Semester Examination (Theory and labcomponents) 	1. Course-end survey						
THEORY COMPONENT							
MATRICES		11 Hours					
Rank of a matrix – Consistency of a system of linear equations - Rouche's theorem - Solution of a system of linearequations-Linearlydependentandindependentvectors–EigenvaluesandEigenvectorsofarealmatrix – Properties of eigenvalues and eigenvectors – Cayley Hamilton theorem (excluding proof) -Orthogonal matrices – Orthogonal transformation of a symmetric matrix to diagonal form – Reduction of quadratic form to							
canonical form by orthogonal transformation DIFFERENTIAL AND INTEGRAL CALCULUS		9 Hours					
Representation of functions -Limit of a function-Continuity -Derivatives -Differentiation rules - Maxima and Minima of functions of one variable - Definite and Indefinite integrals - Techniques of Integration: Substitution rule, Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction.							
FIRST ORDER ORDINARY DIFFERENTIAL EQUA		6 Hours					
Leibnitz's equation – Bernoulli's equation – Applicat Circuits.	tions: Orthogonal trajectories	and Electric					
HIGHER ORDER LINEAR DIFFERENTIAL EQUA	TIONS	9 Hours					
Linear equations of second and higher order with con							
linear equations – Method of variation of parameters							
constant coefficients – Applications: Electric Circuit		1					
FUNCTIONS OF SEVERAL VARIABLES		10 Hours					
Total derivative – Taylor's series expansion – Maxima an		ariables-Constrained					
maxima and minima: Lagrange's multiplier method with	single constraints – Jacobians.						
REFERENCES:							
 GrewalB.S., "HigherEngineeringMathematics", KhannaPublishers, NewDelhi, 41stEdition, 2011. 							
2. RamanaB.V., "HigherEngineeringMathematics", TataMcGrawHillCo.Ltd., NewDelhi, 11th Reprint, 2010.							
3. KreyzigE., "AdvancedEngineeringMathematics", TenthEdition, JohnWileyandsons, 2011.							
4. VeerarajanT.,EngineeringMathematics(forFirstY Delhi, Revised Edition, 2007							

- 5. KandasamyP.,ThilagavathyK.,andGunavathyK.,"EngineeringMathematics",S.Chand& Co., New Delhi, (Reprint) 2008
- 6. VenkataramanM.K., "EngineeringMathematics", TheNationalPub.Co., Chennai, 2003
- 7. Weir, MD, Hass J, Giordano FR: Thomas' Calculus, Pearson education 12th Edition, 2015
- 8. G.B.Thomas and R.L.Finney, Calculus and Analytical Geometry, 11th Edition,Pearson Education, (2006)
- 9. James Stewart, Calculus: Early Transcendentals, Cengage Learning, 7th Edition, New Delhi, 2015.

WEBSITES

https://www.khanacademy.org/tag/maxima-and-minimamathhttps://www.khanacademy.org/math/differentialcalculus

https://www.khanacademy.org/math/integral-calculus

LAB COMPONENT

List of MATLAB Programmes:

- 1. Introduction toMATLAB.
- 2. Matrix Operations Addition, Multiplication, Transpose, Inverse
- 3. Rank of a matrix and solution of a system of linear equations
- 4. Characteristic equation of a Matrix and Cayley-HamiltonTheorem.
- 5. Eigenvalues and Eigenvectors of Higher Order Matrices
- 6. Curve tracing
- 7. Differentiation and Integration
- 8. Solving first and second order ordinary differential equations.
- 9. Determining Maxima and Minima of a function of one variable.
- 10. Determining Maxima and Minima of a function of two variables.

Theory:45Tutorial:0Practical:30Project:0Total: 75Hours

30 Hours

U18CHI1201

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After successful completion of this course, the students should be able to

CO1:	Apply the basic principles of chemistry at the atomic and molecular level.
CO2:	Analyze the impact of engineering solutions from the point of view of chemical principles
CO3:	Apply the chemical properties to categorize the engineering materials and their uses
CO4:	Integrate the chemical principles in the projects undertaken in field of engineering and
	technology
CO5:	Develop analytical proficiency through lab skill sets to demonstrate in professional practice.

Pre-requisite

Nil

CO/POMapping														
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs _						Prog	ramm	e Out	comes	(POs)				
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	М												
CO2	S	М		М										
CO3	S	М		S										М
CO4	S	М		S										S
CO5	М	S		S										

Course Assessment methods:

DIRECT	INDIRECT					
1. Continuous Assessment TestI						
2. Continuous Assessment TestII						
3. Assignment	1. Course-end survey					
4. End Semester Examination						
THEORY COMPONENT						
CHEMICAL BONDING 7 Hours						
Bonding: Introduction – Ionic bonding - Van der Waal's forces (dipole - dipole, dipole - induced						

dipole, induced dipole - induced dipole interactions) - hydrophobic interaction. Bonding in organic molecules: covalent and co-ordinate bonds (overview only) - hybridization (sp, sp2, sp3) - hydrogen bonding and its consequences.

<Signature of BOS chairman, MCE

THERMODY	NAMICS			7 Hours				
Introduction - 7	Thermodynamic pro	ocess – Internal energ	gy – Enthalpy – limi	itations of First law of				
thermodynamics – Second law of thermodynamics - Entropy - Third law of thermodynamics– Free								
Energy and Wor	k Function – Clausiu	s-Clapeyron equation	 Maxwell's relations 	– Kirchhoff's equation.				
ELECTROCH	IEMISTRY AND	CORROSION		7 Hours				
Electrodes - Ele	ectrode Potential –	Nernst equation and	problems - Galvani	c cell - Electrochemical				
Series. Corrosi	on: Classification an	nd mechanism of ch	emical and electroch	nemical corrosion - Factors				
influencing cor	rosion Corrosion cor	ntrol: Inhibitors – Cath	odic protection (Sacr	ificial anodic protection,				
		a) – Protective coating	: Electroplating (Au) a	and Electroless plating (Ni).				
WATER TEC				6 Hours				
		vantagesofhardwate						
•		atmentofhardwater:Ext	-					
	it (colloidal, carbonat	te, phosphate and calg	on conditioning) - De	salination (Reverse osmosis,				
Electrodialysis)		<u>a</u>						
	NG MATERIAL			9 Hours				
		on, Properties and Ap						
		posites – Polymer Co						
	1 11	plications Lubricants						
1	•	1 1		e point, cloud point and				
1 1 /		0	based, sodium base	ed, lithium based) - Solid				
	ohite, molybdenum							
	HEMISTRY AN			9 Hours				
		Adsorption isotherr						
				tion abatement. Catalysis:				
				vid base catalysis – enzyme				
				Introduction – first order,				
-	Tutorial:0	Practical:0		- opposing reactions. Total: 45Hours				
Theory:45		Practical:0	Project:0	Total: 45Hours				
REFERENC								
	, 6	ering Chemistry, 16	n Edition, Dhanpat	Rai PublishingCompany,				
	Reprint 2017.	A.C. Dringinles of above	ai a la hanniatara Viahai	Dublishing Co. 2017				
			•	<u>Publishing Co</u> .,2017				
3. Atkins, P. and de Paula, J., Atkin's Physical Chemistry, 9th ed., Oxford Univ. Press, 2009.								
4. Glasstone S., An introduction to Electrochemistry, 10th Edition, Affiliated to East WestPress								
Private Limited, 2007. 5 Samir Sarkar, Eucle and Combustion, 3rd Edition, Orient Longmon, India 2000								
 Samir Sarkar., Fuels and Combustion, 3rd Edition, Orient Longman, India,2009. Dara S.S. and Umare S.S., A text book of Engineering Chemistry, S.Chand and Company 								
	ew Delhi,2014.		ing chemistry, 5.C	hand and Company				
		India Editorial Tear	n Wiley 2018					
	RY COMPONEN		II, WIICy,2010.					
	tion of Standardsolu							
1		of mixture of acids	vs stronghase					
		rosion of Iron pieces	-					
		losion or non pieces	o yr olendollied y					
T. Lounau	on of the extent of a	-	er / Ferrous ions by					
enectror	bhotometry.	dissolution of Coppo	er / Ferrous ions by					

- 5. Estimation of acids by pHmetry.
- 6. Determination of total, temporary and permanent hardness by EDTAmethod.
- 7. Estimation of DO by Winkler'smethod
- 8. Estimation of Alkalinity by Indicatormethod.
- 9. Estimation of Chloride by Argentometricmethod
- 10. Estimation of Sodium and Potassium in water by Flamephotometry.
- 11. Determination of Flash and Fire point of lubricatingoil
- 12. Determination of Cloud and Pour point of lubricatingoil
- 13. Determination of relative and kinematic viscosities of lubricating oil atdifferent temperatures
- 14. Determination of corrosion rate on mild steel by Weight lossmethod
- 15. Morphological studies of corrosion on mild steel by microscopictechniques

Theory:0	Tutorial:0	Practical:30	Project:0	Total: 30Hours					
REFERENC	ES								
1. Jeffery G.H., Bassett J., Mendham J. and Denny R.C., Vogel's Text Book of Quantitative									
Chemical Analysis, Oxford, ELBS,London,2012.									

2. Shoemaker D.P. and C.W. Garland., Experiments in Physical Chemistry, Tata McGraw-Hill Pub. Co., Ltd., London, 2003.

U18ENI1201

FUNDAMENTALS OF COMMUNICATION-I (Common to all Branches of I Semester B.E/B/Tech Programmes)

L	Т	Р	J	С
2	0	2	0	3

Course Objectives:

- 1. To communicate effectively by using appropriate grammar and technical parlance in a range of academic scenarios.
- 2. To interpret and critically evaluate discourses related to functional English.
- 3. To disseminate professional information through appropriate means of communication.

Course Outcomes

After s	After successful completion of this course, the students should be able to								
Co1	Communicate in English with correct grammar								
Co2	Communicate effectively (Oral and Written)								
Co3	Use communication skills in the real world								

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes(POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO1										S		S		
CO2		М		W		W			М	S		S		
CO3		М		М		W			М	S		S		

<Signature of BOS chairman, MCE

Hours 2 2 4 3 1
2 2 4
2 2 4
2 2 4
2 2 4
2 4
2 4
4
3 1
1
2
4
3
2
1
2
2
4
3
1
2
4
3
2
1
2
2
4
3
1
60
rwal)
1 w ai)

- Norman Lewis)
- 4. Effective Technical Communication Tata Mc Graw Hills Publications (AshrafRizvi)
- 5. English and Soft skills Orient Black Swan Publishers (S. P.Dhanavel)
- 6. Know Your Grammar: Trans.in Tamil & Malayalam A Bilingual Approach(Bloomsbury, UK, 2012, HyacinthPink)

ENGINEERING GRAPHICS

(Common to AE, AUE, CE, MCE, ME, EIE and EEE)

L	Т	Р	J	С
2	0	2	0	3

Course Outcomes

After successful completion of this course, the students should be able to

CO1:	Construct various plane curves.
CO2:	Construct projection of points and projection of lines.
CO3:	Develop projection of surfaces and solids.
CO4:	Solve problems in sections of solids and development of surfaces.
CO5:	Apply free hand sketching and concepts of isometric in engineering practice.
CO6:	Draw engineering drawing in AutoCAD with dimensions.

Pre-requisite

Nil

	CO/PO Mapping													
(S/M/W	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes(POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	М												
CO2	S	S									W			
CO3	S	S									М			
CO4	S	S												
CO5	S	S												
CO6	S													

Course Assessment methods:

DIRECT	INDIRECT
1.Continuous AssessmentI	
2. Continuous Assessment II	
3.Assignment	
4.End semester	
PLANE CURVES, PROJECTION OF POINTS	LINES AND PLANES 10 Hours

Importance of graphics in design process, visualization, communication, documentation and drafting tools, Construction of curves - ellipse, parabola, and hyperbola by eccentricity method only. Orthographic projection of points. Projections of straight lines located in first quadrant - determination of true length and true inclinations. Projections of plane surfaces - polygonal lamina and circular lamina, located in first quadrant and inclined to one referenceplane.

PROJECTION AND SECTION OF SOLIDS

10 Hours

Projection of simple solids - prism, pyramid, cylinder and cone. Drawing views when the axis of the solid is inclined to one reference plane. Sectioning of simple solids - prisms, pyramids, cylinder and cone. Obtaining sectional views and true shape when the axis of the solid is vertical and cutting plane inclined to one reference plane.

DEVELOPMENT OF SURFACES, ISOMETRIC PROJECTIONS AND	10 Hours
FREE-HAND SKETCHING	

Development of lateral surfaces of truncated prisms, pyramids, cylinders and cones.Isometricprojection,Isometricscale,Isometricviewsofsimplesolids,truncatedprisms,pyramid s, cylinders and cones. Free hand sketching techniques, sketching of orthographic views from given pictorial views of objects, including free-hand dimensioning.

INTRODUCTION TO AUTOCAD

15 Hours

Introduction to Drafting Software (AutoCAD) & its Basic Commands. Introduction to coordinate systems, object selection methods, selection of units and precession. sketching – line, circle, arc, polygon, rectangle and ellipse. Working with object snaps, layers and object properties. Editing theobjects–copy,move,trim,extend,workingwitharrays,mirror,scale,hatch,filletandchamfer.

ISOMETRIC VIEWS WITH AUTOCAD

15 Hours

Building drawings – Single and double bed room house (sectional Top view only). Introduction to Motion path animation. Isometric views of simple solid blocks.

Theory:30	Tutorial: 0	Practical:30	Project:0	Total : 60Hours
REFERENCES:				

- 1. Basant Agrawal and CM Agrawal, Engineering Drawing, McGraw-Hill, New Delhi, First Edition, 2008.
- 2. Venugopal K. and Prabhu Raja V., Engineering Graphics, New Age International (P) Limited, New Delhi, 2008.
- 3. Nataraajan K.V., Engineering Drawing and Graphics, Dhanalakshmi Publisher, Chennai, 2005.
- 4. Warren J. Luzadder and Jon. M. Duff, Fundamentals of Engineering Drawing, Prentice Hallof India Pvt. Ltd., New Delhi, Eleventh Edition, 2005.
- 5. Gopalakirishna K.R., Engineering Drawing (Vol. I & II), Subhas Publications, 2001.
- 6. James Leach, AutoCAD 2017 Instructor, SDC Publications, 2016.

PROBLEM SOLVING AND PROGRAMMING USING C

L	Т	Р	J	С
2	0	2	0	3

Course Outcomes

After successful completion of this course, the students should be able to

CO1:	Acquire knowledge on different problem-solving techniques.						
CO2:	Jse appropriate data types and control structures for solving a given problem.						
CO3:	Execute different array and string operations.						
CO4:	Experiment with the usage of pointers and functions.						
CO 5:	Organize data using structures and unions.						

Pre-requisite

Nil

CO/PO Mapping													
(S/M/W indicates strengthofcorrelation) S-Strong, M-Medium, W-Weak													
	Programme Outcomes(POs)												
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
S	М							W					
S	М							W	W				
S	W			W	W			W	W		W		
М	W	М	W	W	W			W	W		М		
М	W	М	W	W	W			W	W		М		
	S S S M	PO1 PO2 S M S M S W M W	PO1PO2PO3SMSMSWMWM	PO1 PO2 PO3 PO4 S M	PO1 PO2 PO3 PO4 PO5 S M	(S/M/W indicates strengthofcorrelaProgramPO1PO2PO3PO4PO5PO6SMIIISMIIISWWWWMWMWW	(S/M/W indicates strengthofcorrelation)Programme OPO1PO2PO3PO4PO5PO6PO7SMIIIIISMIIIISWWWWWMWMWWW	In the original of the original strength of correlation) S-S Programme Outcome PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 S M I I I I I I S M I I I I I I I S M W W W I	In the original of the original strength of correlation) S-Strong, N Programme Outcomes(POs) P01 P02 P03 P04 P05 P06 P07 P08 P09 S M I I I I W W S M I I I I W W S M W W W W W M W M W W W W	In the colspan="5" (S/M/W indicates strengthofcorrelation) S-Strong, M-Medi Programme Outcomes(POs) P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 S M I I I I III W W S M I III IIII W W W W S M IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	In the optical of the strengthof correlation)S-Strong, M-Medium, W-Programme Outcomes(POs)P01P02P03P04P05P06P07P08P09P010P011SMIIIIIIIIISMIIIIIIIISMIIIIIIIISMIIIIIIIIMWWWWWWIIMWMWWWIIMWMWWIIIIIII	In Colspan="6">In Colspan="6"(S/M/W indicates strengthofcorrelation)S-Strong, M-Medium, W-Weak Programme Outcomes(POs)P01P02P03P04P05P06P07P08P09P010P011P012SMIIIIIIIIIIIP012SMIIIIIIIIIIIIIIIIIIIIIP010P011P012SMII	In the second strength of correlation)S-Strong, M-Medium, W-Weak Programme Outcomes(POs)P01P02P03P04P05P06P07P08P09P010P011P012PS01SMIIIIIIIIIIISMIIIIIIIIIIISMIIIIIIIIIISMIIIIIIIIIIIIIIIIIMWMWWIIIIIIIIIIIIIIIIIIIIIII

DIRECT	I	NDIRECT						
1. Continuous Assessment Test I, II								
(TheoryComponent)								
2. Assignment (TheoryComponent)	2. Assignment (TheoryComponent)							
3. Group Presentation (TheoryComponent)	1.Course-end surv	ey						
4. Pre/Post - experiment Test/Viva; ExperimentalReport								
for each experiment (labcomponent)								
5. Model examination (labcomponent)	5. Model examination (labcomponent)							
6. End Semester Examination (Theory and								
labcomponent)								
STRUCTURED PROGRAMMING		6 Hours						
Algorithms, building blocks of algorithms (instructions/statements, state, control flow, functions), not								
code, flow chart, programming language), algorithmic problem s								
(iteration). Introduction to C Programming – Operators and Expr	and Output – Control							
Statements								
ARRAYS AND STRINGS		6 Hours						

Defining an array – Processing an array –Multidimensional Arrays Character Arithmetic – Defining a string – Initialization of Strings – Reading and Writing Strings – Processing Strings –Searching and Sorting ofStrings

FUNCTIONS, STO	6 Hours								
	Definingafunction-Accessingafunction-Functionprototypes-Passingargumentstoafun								
functions – Function	functions – Function with string - Recursion – Storage classes								
POINTERS									
Pointer Fundamentals – Pointer Declaration – Passing Pointers to a Function – Pointers and one- dimensional arrays – operations on pointers– Dynamic memory allocation.									
STRUCTURES AND UNIONS 5 Hours									
Structures and Unions: Defining a Structure – Processing a Structure – User defined data types (Typedef) – Unions									
Theory:30 T	utorial:0	Practical:0	Project:0	Total:					
30 Hours									

	FERENCES:									
1.	ByronSGottfriedandJitendarKumarChhabra, "ProgrammingwithC", TataMcGraw									
	Hill Publishing Company, Third Edition, New Delhi, 2011.									
2.	Pradip Dey and Manas Ghosh, "Programming in C", Second Edition, Oxford University									
	Press,2011.									
3.	Kernighan, B.W and Ritchie, D.M, "The C Programming language", Second Edition,									
	Pearson Education,2006									
	Ashok N. Kamthane, "Computer programming", Pearson Education, 2007.									
5.	Reema Thareja, "Programming in C", Second Edition, Oxford University Press, 2011.									
LA	<u>B COMPONENT CONTENTS</u>									
LI	ST OF EXPERIMENTS 30 Hours									
1.	Writing algorithms, flowcharts and pseudo codes for simpleproblems.									
2.	Programs on expressions and conversions									
3.	Programs using if, if-else, switch and nested ifstatements									
4.	Programs using while, do-while, forloops									
5.	Programs on one dimensional arrays, passing arrays to functions and arrayoperations									
6.	Programs using two dimensional arrays, passing 2D arrays tofunctions									
7.	Programs using Stringfunctions									
8.	Programs using function calls, recursion, call byvalue									
9.	Programs on pointer operators, call by reference, pointers witharrays									
10.	Programs using structures and unions.									
	Theory:0Tutorial:0Practical:30Project: 0Total: 30Hours									
RE	EFERENCES									
1.	Byron S Gottfried and Jitendar Kumar Chhabra, "Programming with C", Tata McGrawHill									
	Publishing Company, Third Edition, New Delhi, 2011.									
2.	PradipDeyand ManasGhosh, "ProgramminginC", SecondEdition,OxfordUniversityPress, 2011.									
3.	Kernighan, B.W and Ritchie, D.M, "The C Programming language", Second Edition, Pearson									
	Education,2006									
4.	Ashok N. Kamthane, "Computer programming", Pearson Education, 2007.									

L	Т	Р	J	С
0	0	4	2	3

Course Objectives

- To help the students look into the functioning of simple to complex devices and systems
- To enable the students to design and build simple systems on theirown
- To help experiment with innovative ideas in design and teamwork
- To create an engaging and challenging environment in the engineeringlab

Course Outcomes

After successful completion of this course, the students should be able to

CO1: Identify a practical problem and find a solution

CO2: Understand the project management techniques

CO3: Demonstrate their technical report writing and presentation skills

Pre-requisite

Nīl

	CO/PO Mapping													
(S/M/W indicates strengthofcorrelation) S-Strong, M-Medium, W-Weak														
COs	Programme Outcomes(POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S	S	S	S	М	W		S			S		
CO2											S			
CO3										S				

Course Assessment methods:

DIRECT	INDIRECT
1. Project reviews50%	1. Course Exit Survey
2. Workbook report10%	
3. Demonstration & Viva-voce40%	
CONTENT:	

The course will offer the students with an opportunity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide thestudentswithampleopportunitytobeinnovativeindesigningandbuildingarangeofproducts from toys to robots and flying machines. In the First semester, students will focus primarily on IOT with C programming using Arduino.

GUIDELINES:

- 1. Practical based learning carrying credits.
- 2. Multi-disciplinary/ Multi-focus group of 5-6 students.
- 3. Groups can select to work on a specific task, or projects related to real world problems.
- 4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group as well as individual students.
- 5. The students have to display their model in the 'Engineering Clinics Expo' at the end of semester.

U18VEP1501	PERSONAL VALUES	L	
U16 V EF 1501	(Mandatory)	0	

Т Р J С 0 0 2 0 0

Course Outcomes

After s	After successful completion of this course, the students should be able to						
CO1:	Acquire and express Gratitude, Truthfulness, Punctuality, Cleanliness & fitness.						
CO2:	Practice simple physical exercise and breathing techniques						
CO3:	Practice Yoga asana which will enhance the quality of life.						
CO4:	Practice Meditation and get benefited.						
CO5:	Procure Self-Healing techniques for propagating healthy society						

Pre-requisite Nil

CO/PO Mapping

(S/M/W indicates strengthofcorrelation)							S	-Stron	ig, M-N	/ledium	, W-W	eak		
COs		Programme Outcomes(POs)												
005	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1												М		
CO2										S				
CO3						М								
CO4						S			М					
CO5										М				
CO6								W				S		

5. Signature of BOS chairman, MCE

DIRECT	INDIRECT								
1. Group Activity / Individual performance									
and assignment	1.Mini project on values / Goodwill								
2. Assessment on Value work sheet /Test	Recognition								
VALUES THROUGH PRACTICAL ACT	IVITIES:								
Knowing the self: Introduction to value education	n - Need & importance of Value education –								
Knowing the self – realization of human life – an	imal instinct vs sixth sense								
Mental Health: Evolution of senses - function									
coordination - Analysis of thoughts - moralization	n of desires- autosuggestions - power of positive								
affirmations. – Meditation and its benefits.									
Physical Health: Physical body constitution– Typ									
healthy eating habits - food as medicine- self hea	0 1								
Core value: Self-love & Self-care Gratitude - Ha									
Punctual-SelfControl-Cleanliness&personalhygi									
Fitness: Simplified physical exercises – Sun sa									
suddhi pranayama – Silent sitting and listening to	o nature – Meditation.								
Workshop mode									
REFERENCES									
	ELF — SOCRATES – PDF formatat								
www.au.af.mil/au/awc/awcgate/army/rotc_self-									
2. STEPS TO KNOWLEDGE: The Book of In									
www.newmessage.org/wp-content/uploads/pdfs									
3. PROMOTING MENTAL HEALTH - Worl	•								
<u>www.who.int/mental_health/evidence/MH_Pro</u> 4. LEARNING TO BE: A HOLISTIC AND I									
UNESCO PDF format at <u>www.unesdoc.unesc</u>									
 PERSONALITY DEVELOPMENT By SW www.estudantedavedanta.net/Personality-Deve 									
www.cstudancdavcdanta.net/1cfs0fafty-Deve	<u>topinent.pur</u>								

Saul Signature of BOS chairman, MCE

SEMESTER II

U18MAI2201

ADVANCED CALCULUS AND LAPLACE TRANSFORMS

(Common to All branches)

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After	After successful completion of this course, the students should be able to						
C01:	Evaluate double and triple integrals in Cartesian coordinates and apply them to calculate area and volume.						
CO2:	Apply various integral theorems for solving engineering problems involving cubes and rectangular parallelepipeds.						
CO3:	Construct analytic functions of complex variables and transform functions from z-plane to w- plane and vice-versa, using conformal mappings.						
CO4:	Apply the techniques of complex integration to evaluate real and complex integrals over suitable. closed paths or contours.						
CO5:	Solve linear differential equations using Laplace transform technique.						
CO6 :	Determine multiple integrals, vector differentials, vector integrals and Laplace transforms using. MATLAB.						

Pre-requisite: U18MAI1201

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs						Progra	mme O	utcom	es(POs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S			М				М	Μ		М	М	М
CO2	S	S			М				М	Μ		М	М	М
CO3	S	S			М				М	Μ		М	М	М
CO4	S S M M M M M M													
CO5	S	S			М				М	Μ		М	М	М
CO6	S	S			М				М	Μ		М		

	DIRECT	INDIRECT
1.	Continuous Assessment Test I, II	
	(Theory components)	
2.	Assignment; Group Presentation, Project report,	
	Poster preparation, Prototype or Product	
	Demonstration etc (as applicable)	
	(Theory component)	
3.	Pre/Post - experiment Test/Viva; Experimental	1.Course-end survey
	Report for each experiment (lab component)	
4.	Model examination (lab component)	
5.	End Semester Examination (Theory and	
	lab component)	

MULTIPLE INTEGRALS	9 Hours				
Double integration – Cartesian coordinates – Change of order of integration - Triple integration in					
Cartesian coordinates – Applications: Area as double integral and Volume as triple integral.					
VECTOR CALCULUS	9 Hours				
Gradient, divergence and curl – Directional derivative – Irrotational and Solenoid ve	ector fields -				
Green's theorem in a plane, Gauss divergence theorem and Stoke's theorem(exclud	ing proofs) –				
Verification of theorem and simple applications.					
ANALYTIC FUNCTIONS	9 Hours				
Functions of a complex variable – Analytic functions – Necessary conditions	, Cauchy- Riemann				
equations in Cartesian coordinates and sufficient conditions (ex	cluding proofs)-				
Propertiesofanalytic function-Construction of analytic function by Milne Thomson meth	od-				
Conformal mapping : $w = z + c$, cz , $1/z$ – Bilinear Transformation					
COMPLEX INTEGRATION	9 Hours				
Cauchy's integral theorem – Cauchy's integral formula – Taylor's and Laurent's ser	ies – Singularities –				
Residues – Residue theorem – Application of residue theorem for evaluation of real i	ntegrals – Contour				
Integration (excluding poles on the real axis).					
LAPLACE TRANSFORMS	9 Hours				
Definition - Properties: Superposition, Shift in t or Time Delay, Shift in s, Time	e Derivatives,				
Time Integral-Initial Value Theorem - Final Value Theorem - Transform of periodic	c functions -Inverse				
transforms-Convolution theorem-Applications: Solution of linear ordinary different	ial equations of				

	Tutorial:0	Practical:0	Project:0	Total:
30 Hou	rs		ů (
REFERENC	ES:			
1. Grewal B.S.	S., "Higher Enginee	ring Mathematics", k	Khanna Publishers, Nev	w Delhi, 41st
Edition, 2011.				
2. Ramana B.	V., "Higher Engine	ering Mathematics",	Tata McGraw Hill Co	. Ltd., New
Delhi, 11th Re	T			
		athematics (for First `	Year), Tata McGraw H	lill Pub. Co. Ltd., New
,	ised Edition,2007.			
		K., and Gunavathy K.	, "Engineering Mather	natics", S.Chand & Co.,
	, (Reprint)2008.			1 0011
	e	U	nthEdition,JohnWiley	-
			The National Pub. Co.,	
			s Pearson education 12	uied, 2015.
	AB Programmes	•		
	PERIMENTS			30 Hours
1. Evaluating	-	n constant and variab	le limits.	
-	امتعام أسلم مسما			
2. Area as dou	0			
 Area as dout Evaluating 	triple integral with	constant and variable	limits	
 Area as dout Evaluating Volume as 	triple integral with or triple integral		limits	
 Area as dout Evaluating Volume as Evaluating 	triple integral with triple integral gradient, divergence	e and curl	limits	
 Area as dout Evaluating Volume as Evaluating Evaluating Evaluating 	triple integral with triple integral gradient, divergence line integrals and w	e and curl ork done	limits	
 Area as douted as doute	triple integral with triple integral gradient, divergence line integrals and w Green's theorem in t	e and curl ork done he plane		
 Area as dou Evaluating Volume as Evaluating Evaluating Evaluating Verifying C Evaluating 	triple integral with triple integral gradient, divergence line integrals and w Green's theorem in t Laplacetransformsa	e and curl ork done he plane ndinverseLaplacetran	limits sformsoffunctionsincle	udingimpulse.
 Area as dou Evaluating Volume as Evaluating Evaluating Evaluating Verifying O EvaluatingI Heaviside f 	triple integral with triple integral gradient, divergence line integrals and w Green's theorem in t Laplacetransformsat unctions and applyi	e and curl ork done he plane ndinverseLaplacetran ng convolution.		

Signature of BOS chairman, MCE

ENGINEERING PHYSICS

(Common to AU, ECE, CE, MEC, ME)

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After	After successful completion of this course, the students should be able to						
CO1:	Understand the principles of motion and rotation of a rigid body in the plane.						
CO2:	2: Enhance the fundamental knowledge in properties of matter and its applications relevant to						
	various streams of engineering and technology.						
CO3:	To introduce the phenomenon of heat and account for the consequence of heat transfer in						
	engineering systems.						
CO4:	To apply the concepts of electrostatics and dielectrics for various engineering applications.						
CO5:	To understand the basics of magneto statics						
CO6:	To introduce and provide a broad view of the smart materials and Nano science to						
	undergraduates.						

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs						Progr	amme	Outcor	nes(PO	s)				
0.03	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S		Μ									Μ	Μ	
CO2	S		Μ									Μ	M	
CO3	S		Μ									Μ	Μ	
CO4	S		М									Μ		М
CO5	S		Μ									Μ		М
CO6	S		Μ	Μ								М		М

	DIRECT	INDIRECT
2. 3. 4.	Presentation, Project report, Posterpreparation, Pre/Post - experiment Test/Viva; Experimental Report for each experiment (labcomponent)	1.Course-end survey
	labcomponent) HEORY COMPONENT CONTENTS	
K	INEMATICS & RIGID BODY MOTION	9 Hours

Definition and motion of a rigid body in the plane; Rotation in the plane;	Kinematics in a
coordinatesystemrotatingandtranslatingintheplane; Angularmomentum about apoint	
planar motion; Euler's laws of motion, their independence from Newton's laws, a	and their necessity in
describing rigid body motion; Examples.	
PROPERTIES OF MATTER	9 Hours
Hooke's Law Stress - Strain Diagram - Elastic moduli - Relation between elastic c	onstants - Poisson's
Ratio - Expression for bending moment and depression - Cantilever - Expression f	for Young's modulus
by Non-uniform bending and its experimental determination.	
HEAT	9 Hours
Specific heat capacity, thermal capacity. Temperature rise. Coefficient of linear thermal	expansion. Methods of
measurement of thermal expansion. Thermal stresses in composite structures due to non-	-homogeneous thermal
expansion. Applications -The bimetallic strip. Expansion gaps and rollers in engineering	ng structures. Thermal
conductivity: differential equation of heat flow. Lee's disc apparatus for determination of	thermal conductivity.
Thermal Insulation. Convection and radiation. Applications to refrigeration and power ele	ctronic devices.
ELECTROSTATICS & MAGNETOSTATICS	9 Hours
ELECTROSTATICS: Maxwell's equation for electrostatics – E due to straight cond	luctors, circular loop,
infinite sheet of current - electric field intensity (D) - Electric potential - c	lielectrics- dielectric
polarization - internal field - Clasious - Mosotti equation - dielectric stre	ngth - applications.
MAGNETOSTATICS: Maxwell's equation for magnetostatics - B in straight	conductors, circular
loop, infinites heet of current-Lorentz force, magnetic field intensity (H)-Biot-Savart's	Law–
Ampere's Circuit Law – Magnetic flux density (B).	
NEW ENGINEERING MATERIALS AND NANO TECHNOLOGY	9 Hours
New Engineering Materials: Metallic glasses – preparation, properties and a	pplications – Shape
memory alloys (SMA) - characteristics, properties of NiTi alloy application	is - advantages and
disadvantages of SMA.	-
Nano Materials: synthesis - Ball milling - Sol-gel - Electro deposition - proper	ties of nano particles
and applications Carbon Nano Tubes - fabrication by Chemical Vapour Deposi	tion - structure,
properties & applications.	
Theory:45Tutorial:0Practical:0Project:0	Total:
45 Hours	
REFERENCES:	

	-	D
	Sa	-1
Signatu	re of BOS cha	airman, MCE

- 1. Essential University Physics, Vols. 1 and 2., Richard Wolfson, Pearson Education, Singapore, 2011.
- 2. Engineering Mechanics (2nd ed.), Harbola M. K., Cengage publications, New Delhi, 2009.
- 3. Concepts of Physics, H. C. Verma vol 1 and 2, Bharati Bhawan Publishers & Distributors; First edition(2017).
- 4. Engineering Electromagnetics, W. H. Hayt and John A. Buck, 6th Edition, Tata McGraw Hill, New Delhi, 2014.
- 5. Theory and Problems of Electromagnetic Schaum's Outline Series, 5th Edition, JosephA. Edminister, Tata McGraw Hill Inc., New Delhi,2010.
- 6. Engineering Physics, Rajendran V., Tata McGraw-Hill Education Pvt. Ltd., 2010
- 7. Nano the Essentials, Pradeep T., McGraw-Hill Education, Pvt. Ltd., 2007.

List of MATLAB Programmes:

LIST OF EXPERIMENTS				30 Hours
1. Non-uniform bending – Det	ermination of Young	'smodulus		
2. Compound Pendulum – Det	ermination of accele	ration due to gr	avity	
3. Spectrometer – Determination	on of wavelength of	mercury source	using grating	
4. Air wedge - Determination	of thickness of thin s	heet		
5. Semiconductor Laser:				
a. Determination of wave	length of laser			
b. Determination acceptar	ice angle and numer	cal aperture of	an optical fibre.	
c. Determination of partic	le size			
6. Melde's string – Determinat	ion of frequency of a	a tuning fork		
7. Determination of band gap of	of a semiconductor			
8. Ultrasonicinterferometer–D	eterminationofveloci	tyofsoundandco	ompressibilityofaliq	luid
9. Luxmeter – Determination of	of efficiency of solar	cell		
10. Lee's disc – Determination	of thermal conductiv	ity of a bad cor	nductor	
Experiments for Demonstra	tion:			
1. Halleffect				
2. HardnessTest				
3. Four probe speriment				
4. Hysteresiscurve				
Theory: 45 Tutorial:0 P	ractical:30	Project:0	Total: 75Hours	3
REFERENCES				
1. Laboratory Manual of Engi	neering Physics, Dr.	Y. Aparna & D	r. K. Venkateswara	Rao,
V.G.S Publishers.				
2. Practical Physics, G.L. Squ	res, Cambridge Univ	versity Press, C	ambridge,1985.	
3. Great Experiments in Physi	cs, M.H. Shamos, He	olt, Rinehart an	d Winston Inc., 195	<i>i</i> 9.
1 Experiments in Medern Phy	voice A C Molicoine	A andomia D	$\mathbf{N}\mathbf{V}$ 1066	

4. Experiments in Modern Physics, A.C. Melissinos, Academic Press, N.Y., 1966.

U18ENI2201FUNDAMENTALS OF COMMUNICATION
IILTPJCCommon to all branches of Engineering and
Technology)20203

Course Objectives:

- 1. To effectively use the basic language skills to imbibe technical languageskills.
- 2. To hone written and spoken competencies leading to effective communication.
- 3. To comprehend, use and explain technical data and information.

Course Outcomes

After successful completion of this course, the students should be able to					
Co1	Read, understand, and interpret material on technology.				
Co2	Communicate knowledge and information through oral and written medium.				
Co3	Compare, collate and present technical information according to the audience and				
	purpose.				

Pre-requisite

Nil

CO/PO Mapping														
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	Programme Outcomes(POs)													
0.03	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		W		S					S	S		S		
CO2				S					S	S		W		
CO3				М					S	S		S		

	DIRECT	INDIRECT				
1. Continuo	ous Assessment of Skills					
2. Assignm	ent					
3. WrittenT	lest	1. Course-end survey				
4. End Sem	esterExamination					
No	TOPIC	12 Hrs				
	MODULE I					
1.1	Introduction to Technical Writing Tech	2				
1.2	Writing Instructions / Instruction Manu	2				
1.3	Writing Recommendations	2				
1.4	Speaking Activity I	6				
	MODULE I	Ι	12 Hrs			

2.1	Process Writing	2					
2.2	Review Writing I - Product	2					
2.3	Review Writing II – Article	2					
2.4	Speaking Activity II	6					
	MODULE III	12 Hrs					
3.1	Interpreting and Transcoding Graphics	2					
3.2	Types of Report / Writing a Report	2					
3.3	Reading & Responding to texts	2					
3.4	Speaking Activity III	6					
	MODULE IV	12 Hrs					
4.1	Drafting a project proposal	2					
4.2	Listening to technical talks	2					
4.3	Preparing a survey Questionnaire	2 2					
4.4	Speaking Activity IV	6					
	MODULE V	12 Hrs					
5.1	Writing Memos, Circulars, Notices	2					
5.2	Writing Agenda and Minutes	2					
5.3	Inferential Reading	2					
5.4	Speaking Activity V	6					
	Total						
REFERENCES:							
1. Technical English Workbook, VRB Publishers Pvt. Ltd (Prof. JewelcyJawahar,							
Dr.P.Ratna)							
2. Effective Technical Communication, Tata McGraw Hills Publications (AshrafRizvi)							
3. Technical Communication – English Skills for Engineers, Oxford HigherEducation							
(Meenakshi Raman, SangeetaSharma)							
Theory: 3	0 Tutorial: 0 Practical: 15 Project: 0	Total: 45 Hours					

Saul Signature of BOS chairman, MCE

ENGINEERING MECHANICS

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

U18MET2003

After s	After successful completion of this course, the students should be able to						
CO1:	Apply the fundamental concepts in determining the effect of forces on a particle.						
CO2:	Make use of various principles in the determination of effect of forces in a rigid body.						
CO3:	Determine the geometry dependent properties of solids and sections						
CO4:	Solve problems in static friction.						
CO5:	Identify motion and determine the velocity and acceleration of a particle.						
CO6:	Apply the principles of kinetics in solving problems in dynamics.						

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs						Prog	gramm	e Outc	omes(l	POs)				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S						W						М	
CO2	S						W						М	
CO3	S						W						М	
CO4	Μ						W						М	
CO5	М						W						М	
CO6	М						W						М	

DIRECT	INDIRECT			
 Continuous Assessment Test I,II Assignment 	1.Course-end survey			

5. Signature of BOS chairman, MCE

3. End Semester Examination			
THEORY COMPONENT CO	<u>NTENTS</u>		
STATICS OF PARTICLES			9 Hours
Introduction - Laws of Mechanics,	Parallelogram and tr	riangular Laws of for	ces – Coplanar Forces -
Resolution and Composition of for		gram - Equilibrium of	a particle – Lami's
theorem – Equilibrium of a particle	e in space.		
STATICS OF RIGID BODIES			9 Hours
Principle of transmissibility - Mor	nent of force about a	point - Varignon's t	heorem – Moment of a
couple - Equivalent couple - Mon	nent of force about ar	n axis – Coplanar non	-concurrent forces acting on
rigid bodies - Resultant and equ			into force couple system -
Equilibrium in three dimensions –	Reactions and suppo	orts.	
GEOMETRY DEPENDANT PR	OPERTIES		9 Hours
Centre of gravity, Centre of mass and	Centroid - Moment of	f Inertia of simple and o	complex areas – Transfer
formula – Radius of gyration – Polar	moment of inertia – Pr	oduct of inertia - Mass	moment of Inertia of simple
solids.			
FRICTION			6 Hours
Laws of friction - coefficient of fr	iction – Dry friction	– wedge friction – lac	dder friction – rolling
resistance.			
KINEMATICS OF PARTICLES			6 Hours
Kinematics – Rectilinear and curvi	linear motion – proje	ectile motion	
KINETICS OF PARTICLES			6 Hours
Kinetics - Newton's second law -		ple – Work Energy n	nethod – Principle of
Impulse momentum – Impact of E			
Theory: 45 HoursTutorial: 0	Practical:0	Project:0	Total:45
Hours			
REFERENCES:			
1. Beer F P and Johnson E R, "Ve		ngineers, Statics and	Dynamics", TataMc-Graw
Hill Publishing Co. Ltd., New D	, ,		
2. Hibbeller, R.C., Engineering M	echanics: Statics, and	l Engineering Mecha	nics: Dynamics,13th
edition, Prentice Hall,2013.			
3. J.L. Meriam & L.G. Karige, En			
Mechanics: Dynamics (Volume			
4. P. Boresi& J. Schmidt, Enginee	ring Mechanics: Stat	ics and Dynamics, 1/	e, Cengage learning,2008.
5. Irving H. Shames, G. Krishna M		~	
		-	tics and Dynamics, Fourth
Edition – PHI / Pearson Educati	on Asia Pvt. Ltd.,20	06.	tics and Dynamics, Fourth

6. Rajasekaran S and Sankarasubramanian G, "Engineering Mechanics-Statics and Dynamics", Vikas Publishing House Pvt. Ltd., New Delhi,2006

PYTHON PROGRAMMING

(Common to All Branches)

L	Т	Р	J	С
2	0	2	0	3

Course Outcomes

After	After successful completion of this course, the students should be able to						
CO1:	Classify and make use of python programming elements to solve and debug simple	K4					
	logical problems. (K4,S3)						
CO2:	Experiment with the various control statements in Python. (K3,S2)	K3					
CO3:	Develop Python programs using functions and strings.(K3,S2)	K3					
CO4:	Analyze a problem and use appropriate data structures to solve it. (K4,S3)	K4					
CO5:	Develop python programs to implement various file operations and exception	K3					
	handling. (K3,S2)						

Pre-requisite

Nil

	CO/PO Mapping													
(S/M/W indicates strengthofcorrelation) S-Strong, M-Medium, W-Weak														
COs						Progra	amme	Outco	omes(I	POs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		S			М					Μ		Μ		
CO2			Μ							Μ		Μ		
CO3			Μ							Μ		Μ	Μ	
CO4	S	S	Μ		Μ					Μ		Μ	Μ	
CO5			М							М		М		

	DIRECT	INDIRECT					
1.	Continuous Assessment Test I, II (Theory component)						
2.	Open Book Test, Assignment	1.Course-end survey					
3.	Viva, Experimental Report for each						
	Experiment (labComponent)						
4.	Model Examination (labcomponent)						
5.	End Semester Examination (Theory and lab						
	components)						
TH	EORY COMPONENT CONTENTS						
BA	SICS OF PYTHON PROGRAMMING		6 Hours				
	Introduction-Python Interpreter-Interactive and script mode -Values and types, operators, expressions, statements, precedence of operators, Multiple assignments, comments.						
	CONTROL STATEMENTS AND FUNCTIONS IN PYTHON 6 Hours						

	1.1 0
Conditional (if), alternative (if-else), chained conditional (if-elif-else)-Iteration-w	
break, continue, pass – Functions - Introduction, inbuilt functions, user defined fu	inctions,
passing parameters, return values, recursion, Lambda functions.	
DATA STRUCTURES: STRINGS, LISTS and SETS	7 Hours
Strings-String slices, immutability, string methods and operations -Lists-creating lists, list	st operations, list
methods, mutability, aliasing, cloning lists, list and strings, list and functions-list process	ing-list
comprehension, searching and sorting, Sets-creating sets, set operations.	
DATA STRUCTURES: TUPLES, DICTIONARIES	5 Hours
Tuples-Tuple assignment, Operations on Tuples, lists and tuples, Tuple as return Dictionaries-operations and methods, Nested Dictionaries.	value-
FILES, MODULES, PACKAGES	6 Hours
Files and Exception-Text files, reading and writing files, format Operator-Module	
Modules-Creating own Python Modules-packages, Introduction to exception hand	
Theory: 30 Tutorial: 0 Practical:0 Project: Total: 30Hours	-
REFERENCES:	•
	0.1.1
1. Ashok Namdev Kamthane, Amit Ashok Kamthane, "Programming and Problem	n Solvingwith
Python", Mc-Graw HillEducation,2018.	
2. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", Se	econdedition,
Updated for Python 3, Shroff / O'Reilly Publishers,2016.	
3. Robert Sedgewick, Kevin Wayne, Robert Dondero, "Introduction to Programmi	• •
An Inter-disciplinary Approach", Pearson India Education Services Pvt. Ltd.,20	
4. Timothy A. Budd," Exploring Python", Mc-Graw Hill Education (India) Private	
5. Kenneth A. Lambert, "Fundamentals of Python: First Programs", CENGAGE L	
6. Charles Dierbach, "Introduction to Computer Science using Python: A Computa	ational Problem
Solving Focus", Wiley India Edition,2013.	
E BOOKS AND ONLINE LEARNING MATERIALS	
1. <u>www.mhhe.com/kamthane/python</u>	
2. Allen B. Downey, Think Python: How to Think Like a Computer Scientist, see	cond edition,
Updated for Python 3, Shroff / O'Reilly Publishers, 2016(http://greenteapress.	com/wp/think-
python/)	-
LAB COMPONENT CONTENTS	
LIST OF EXPERIMENTS	30 Hours
	Co Hourb

- 1. Implement simple python programs using interactive and scriptmode.
- 2. Develop python programs using id() and type()functions
- 3. Implement range() function inpython
- 4. Implement various control statements inpython.
- 5. Develop python programs to perform various string operations like concatenation, slicing, Indexing.
- 6. Demonstrate string functions using ython.
- 7. Implement user defined functions using python.
- 8. Develop python programs to perform operations onlist
- 9. Implement dictionary and set inpython
- 10. Develop programs to work with Tuples.
- 11. Create programs to solve problems using various data structures inpython.
- 12. Implement python program to perform fileoperations.
- 13. Implement python programs using modules and packages

Theory:0	Tutorial:0	Practical:30	Project:0	Total: 30Hours			
ONLINE C	COURSES AND V	VIDEO LECTURES	5:				
http://nptel.a	<u>ac.in</u>						
https://www	.edx.org/course/in	ntroduction-to-pythor	-fundamentals-1				
https://www.edx.org/course/computing-in-python-ii-control-structures-0							
https://www	https://www.edx.org/course?search_query=Computing+in+Python+III%3A+Data+Structures						

L	Т	Р	J	С
0	0	4	2	3

Course Objectives:

- To help the students look into the functioning of simple to complex devices and systems
- To enable the students to design and build simple systems on theirown
- To help experiment with innovative ideas in design and teamwork
- To create an engaging and challenging environment in the engineeringlab

Course Outcomes

After successful completion of this course, the studen	its should be able to
--	-----------------------

	-
CO1	Identify a practical problem and find a solution
CO2	Understand the project management techniques
CO3	Demonstrate their technical report writing and presentation skills

Pre-requisite

Nil

CO/PO Mapping														
(S/M/W indicates strengthofcorrelation) S-Strong, M-Medium, W-Weak														
COs	Programme Outcomes(POs)													
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S	S	S	S	М	W		S			S		
CO2											S			
CO3										S				

Course Assessment methods:

DIRECT	INDIRECT
1. Project reviews50%	1.Course Exit Survey
2. Workbook report10%	
3. Demonstration & Viva-voce40%	
Content:	

The course will offer the students with an opportunity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide the students with ample opportunity to be innovative in designing and building a range of products from toys to robots and flyingmachines.

In the Second semester, students will focus primarily on Raspberry pi-based controllers with Python programming

GUIDELINES:

1. Practical based learning carrying credits.

- 2. Multi-disciplinary/ Multi-focus group of 5-6students.
- 3. Groups can select to work on a specific tasks, or projects related to real world problems.
- 4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group
- as well as individual students.
- 5. Students have to display their model in the 'Engineering Clinics Expo' at the end of semester.
- 6. The progress of the course is evaluated based on reviews and final demonstration of prototype.

Total Hours: 90

INTERPERSONAL VALUES

(Mandatory course)

L	Т	Р	J	С
0	0	2	0	0

Course Outcomes

After s	After successful completion of this course, the students should be able to							
CO1:	: Develop a healthy relationship & harmony with others							
CO2:	Practice respecting every human being							
CO3:	Practice to eradicate negative temperaments							
CO4:	Acquire Respect, Honesty, Empathy, Forgiveness and Equality							
CO5:	Practice Exercises and Meditation to lead a healthy life							
CO6:	Manage the cognitive abilities of an Individual							

Pre-requisite

U18VEP1501 / PERSONAL VALUES

	CO/PO Mapping													
	(S/M/W indicates strengthofcorrelation) S-Strong, M-Medium, W-Weak													
COs						Progra	amme	Outco	mes(P	Os)				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1										S				
CO2									S					
CO3											М	S		
CO4						Μ								
CO5												М		
CO6											М			

DIRECT		INDIRECT								
1. Group Activity/Individual perfe	ormance	1. Mini	project	on	values	/	Good	will		
and assignment	R	Recognition								
2. Assessment on Value work sheet /T	est									
VALUES THROUGH PRACTICAI	ACTIVITI	ES:								
INTRODUCTION										
Introduction to interpersonal values –	Developing ha	harmony with others – Healthy relationship –								
Need&importanceofinterpersonalvalue	esfordealingwi	vithothersand	dteam-Eff	fectiv	ve					
communication with others.										
MANEUVERING THE TEMPERA	MENTS									
From Greed To Contentment - Anger	To Tolerance -	- Miserlines	ss To Cha	rity	– Ego T	o Ec	quality -			
Vengeance To Forgiveness.				-			-			
CORE VALUE : TRUTHFULNESS										

Honesty –Helping–Friendship – Brotherhood – Tolerance – Caring & Sharing – Forgiveness – Charity – Sympathy — Generosity – Brotherhood - Adaptability.

PATHWAY TO BLISSFUL LIFE :

Signs of anger – Root cause – Chain reaction – Evil effects on Body and Mind – Analyzing roots of worries – Techniques to eradicate worries.

THERAPEUTIC MEASURES:

Spine strengthening exercises - Nero muscular breathing exercises - Laughing therapy - Mindfulness. meditation.

Workshop mode

REFERENCES:

- 1. INTERPERSONAL SKILLS Tutorial (PDF Version) Tutorials Point www.tutorialspoint.com/interpersonal_skills/interpersonal_skills_tutorial.pdf
- 2. INTERPERSONAL RELATIONSHIPS AT WORK KI Open Archive Karolinskawww. publications.ki.se/xmlui/bitstream/handle/10616/39545/thesis.pdf?sequence=1
- 3. VALUES EDUCATION FOR PEACE, HUMAN RIGHTS, DEMOCRACY UNESCO www.unesdoc.unesco.org/images/0011/001143/114357eo.pdf
- 4. MANEUVERING OF SIX TEMPERAMENTS VethathiriMaharishi www.ijhssi.org/papers/v5(5)/F0505034036.pdf
- 5. THE BLISS OF INNER FIRE: HEART PRACTICE OF THE SIX ... Wisdom Publications www.wisdompubs.org/sites/.../Bliss%20of%20Inner%20Fire%20Book%20Preview.pd..

SEMESTER III

PARTIAL DIFFERENTIAL EQUATIONS AND TRANSFORMS (Common to AE/AUE/CE/ME/MCE/EEE)

L	Т	Р	J	С
3	1	0	0	4

Course Outcomes

After s	After successful completion of this course, the students should be able to						
CO1:	Develop a partial differential equation and solve certain types of partial differential equations.	K2					
CO2:	Identify how to find the Fourier Series and half range Fourier Series of a function	K2					
CO3:	Describe one dimensional wave equation, one dimensional heat equation in steady state using. Fourier series	K3					
CO4:	Apply Fourier Series to solve the steady state equation of two-dimensional heat equation in Cartesian coordinates.	K2					
CO5:	Apply the Fourier transform, Fourier sine and cosine transform to certain functions and use. Parseval's identity to evaluate integrals.	K3					
CO6:	Evaluate Z – transform for certain functions. Estimate Inverse Z – transform of certain functions and to solve difference equations using them.	K2					

Pre-requisite

Nil

CO/PO Mapping

(S/M/W indicates strength of correlation)						S-Strong, M-Medium, W-Weak								
COs		Programme Outcomes(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	М			М				М	М		S	М	М
CO2	S	М		М									W	W
CO3	S	S	S		S				М	М		S	W	W
CO4	S	М	М									М	W	W
CO5	S	М	М		S								W	W
CO6	S	S			S				М	М		S		

DIRECT	INDIRECT								
1. Continuous Assessment Test I,II	1.Course end survey								
2. End Semester Examination									
3. Assignment									
PARTIAL DIFFERENTIAL EQUATIONS	I	9+3 Hours							
Formation of partial differential equations by elimin									
Solution of PDE by variable separable method – Solu									
equations (excluding reducible to standard types) -		Homogeneous							
partial differential equations of second and higher or	ler with constant coefficients.								
FOURIER SERIES		9+3 Hours							
Dirichlet's conditions – General Fourier series – Odd range cosine series – Parseval's identity – Harmonic		eries – Half							
BOUNDARY VALUE PROBLEMS – ONE DIME	ENSIONAL EQUATIONS	5+2 Hours							
Classification of second order quasi linear partial diff	erential equations –Solution of one-dime	ensional wave							
equation – One dimensional heat equation (excluding	insulated ends) – Fourier series solution	s in Cartesian							
coordinates.									
BOUNDARY VALUE PROBLEMS – TWO DIM		4+1 Hours							
Steady state solution of two-dimensional heat equation	on (Insulated edges excluded) - Fourier	series							
solutions in Cartesian coordinates.		0.077							
FOURIER TRANSFORM		9+3Hours							
Statement of Fourier integral theorem – Infinite Four Properties – Transforms of simple functions – Conve		forms –							
Z –TRANSFORM		9+3 Hours							
Z-transform - Elementary properties - Convolution th	heorem- Inverse Z – transform (by using	g partial							
fractions, residues and convolution theorem) – Soluti	on of difference equations using Z - tran	nsform.							
Theory:45Hours Practical:15Hours	Total	Hours: 60							
REFERENCES:									
1. Grewal B.S., "Higher Engineering Mathematic		n Edition.2014.							
2. Veerarajan. T., "Transforms and Partial Differe									
Education Pvt. Ltd., New Delhi, Second reprint									
	3. Kandasamy P., Thilagavathy K. and Gunavathy K., "Engineering Mathematics Volume								
	 III",S.Chand & Company ltd., New Delhi,2006. 4. Ian Sneddon., "Elements of partial differential equations", McGraw – Hill, New Delhi,2003. 								
 4. Ian Sneddon., "Elements of partial differential equations", McGraw – Hill, New Delhi,2003. 5. Arunachalam T., "Engineering Mathematics III", Sri Vignesh Publications, Coimbatore2013. 									

ELECTRONIC DEVICES AND CIRCUITS

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After s	After successful completion of this course, the students should be able to				
CO1:	Use passive elements and basic theorems to solve electric circuits.	K2			
CO2:	Understand the basic principles of semiconductor devices.	K2			
CO3:	Use diode to construct regulators, rectifiers, and other applications.	K3			
CO4:	Analyze small signal amplifiers and oscillators constructed using transistors.	K2			
CO5:	Apply op-amp to construct various applications.	K3			

Pre-requisite

Nil

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes(POs) COs PO1 PO2 PO3 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PO4 S Μ **CO1** S Μ **CO2** Μ S S S **CO3** М S Μ S S **CO4** Μ S S S М CO5

DIRECT	INDIRECT				
1. Continuous Assessment Test I,II	1. Continuous Assessment Test I,II 1.Course end survey				
2. End Semester Examination					
3. Assignment					
CIRCUIT THEORY INTRODUCTION		9 Hours			
Network Theorems: Kirchhoff's laws – Thevenin's t	heorem - Norton's theorem -				
Superposition theorem – Maximum power transfer th	neorem – Nodal and Mesh Analysis				
THEOREMS AND ABSTRATION 9 Hour					
PN junction – diode equation (Derivation not required) – forward and reverse bias – Diode dc and					
acresistances-Zenerdiode-BipolarJunctionTransistor-CE,CBandCCconfigurations-Biasing of a					
transistor; fixed bias, self-bias – FET – Common source and drain characteristics of JFET and MOSFET.					
APPLICATION OF DIODES		9 Hours			

Half Wave rectifier and Full Wave rectifiers – Filters with Capacitor and Inductors - Clippers and Clampers – Voltage Multipliers – Voltage regulators – Zener, series and shunt types.

AMPLIFIERS AND OSCILLATORS9 HoursCommon Emitter configuration - h parameter model for low frequencies – Small signal amplifiers - cascading
amplifiers, differential amplifier – Oscillators – Barkhausen stability criterion - Hartley oscillators and Colpitts
oscillators

9 Hours

OPERATIONAL AMPLIFIERS

Ideal characteristics – Inverting, Non-inverting – summer – Comparator, Integrator, differentiator – Schmitt trigger – R.C. Phase shift oscillator, Wein Bridge Oscillator – Astable multivibrator

Theory:45 Hours	Practical:30Hours	Total Hours: 75
REFERENCES:		

- Agarwal, Anant, and Jeffrey H. Lang. Foundations of Analog and Digital Electronic Circuits. San Mateo, CA: Morgan Kaufmann Publishers, Elsevier, July 2005. ISBN: 9781558607354(Unit: 1, 2, 3, 4, 5)
- 2. Albert Malvinoand BatesJ., Electronic Principles, Tata McGraw-HillPub. Company Ltd., 9th Edition, 2020
- 3. MillmanJ.,HalkiasC.C.andSatyabrataJit,ElectronicDevicesandCircuits,TataMcGrawHill, New Delhi, 2nd edition, 2008.
- 4. Thomas L. Floyd, Electronic Devices, Pearson Education Asia, 10th edition, 2008.
- 5. WilliamHayt, KemmerlyJ. and Durban S.M., Engineering Circuit Analysis, 9th Edition, Mc GrawHill Education, 2020.
- 6. Sudhakar, Shyammohan and Palli S., Circuits and Networks: Analysis & Synthesis, Tata McGraw Hill, New Delhi, 5th edition, 2015.
- 7. SalivahananS., SureshkumarN. And VallavarajA., Electronic Devices and Circuits, Tata Mc Graw Hill publishing company, New Delhi, 4th edition, 2016
- 8. Roy ChowdhuryD. and Jain ShailB., Linear Integrated Circuits, NewAgeInt.Pub.,4thedition, 2017.

LIST OF EXPERIMENT:

- 1. Characteristics of PN junction diode and Zener diode
- 2. Input and Output characteristics of BJT
- 3. Characteristics of JFET
- 4. Frequency response of CE amplifier
- 5. Clipper and Clamper
- 6. Phase shift and Wein Bridge oscillators using OP-AMP
- 7. Astable multivibrator using OP-AMP
- 8. Voltage Regulator (Zener diode, Transistor series and shunt)
- 9. Half-wave and Full-wave Rectifier with and without filter.
- 10. Printed Circuit Board design using software for simple circuits.

ELECTRICAL MACHINES

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After s	After successful completion of this course, the students should be able to					
CO1:	Describe the construction, principle of operation and performance of DC motors.	K2				
CO2:	Elucidate the construction, principle of operation and performance of Induction Machines	K2				
CO3:	Summarize the speed control methods of electrical machines	K2				
CO4:	Explain the construction, principle of operation and performance of special machines and Permanent magnet machines.	K2				
CO5:	Select suitable motor for simple applications	K3				

Pre-requisite Nil

CO/PO Mapping														
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	COs Programme Outcomes(POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М		М										М	
CO2	М												М	
CO3	М												М	
CO4	М		М										М	
CO5											М		М	

DIRECT	INDIRECT			
1. Continuous Assessment Test I,II	1.Course end survey			
2. End Semester Examination				
3. Assignment				
DC MACHINES		12 Hours		
DC machines: Principle of working -Construction, -T	ypes of DC machines based on			
construction-Back emf, voltage equations, torque equ				
Speed control of DC series and Shunt motors -Armat	ure and Field control.			
AC MACHINES		12 Hours		
Three phase induction motor: Principle of working -c	onstruction - Production of RMF - Torq	ue-slip		
characteristics, torque equation - cogging – crawling - Speed control of three phase induction motor -				
Voltage Control-Voltage/frequency control-slip powe	er recovery scheme			
PERMANENT MAGNET MACHINES				

PMDC motors: Construction, principle of	operation -Permanent magnet and va	riable reluctance type: Construction,
principle of operation. BLDC motors: Co	nstruction, principle of operation.	
SPECIAL MACHINES		6 Hours
Stepper motors: Construction, principle o Construction of AC and DC servo Motors		ervo motors -Servo Mechanism-
SELECTION OF A MOTOR		9 Hours
Factors influencing the selection of a moto – Heat flow in a Motor - Fatigue and Lu motor for an industrial applications.		
Theory:45 Hours	Practical:30Hours	Total Hours: 75
REFERENCES:		
1. Theraja B.L and Theraja A.K, "A" machines, student edition, S. Chan		", Volume 2: AC and DC
2. JANARDANAN, E.G., SPECIAL		a. PHI Learning, 2014.
3. Nagrath I J and Kothari DP., "Elect		
4. Pillai SK, "A first course on Electri		
5. Stephen Chapman, "Electric Machi		
Computer Engineering 7th edition,	•	
6. UnivProf. DrIng., Dr. H.C. Gerh	ard Henneberger, "Electrical Mac	chines I Basics, Design, Function,
Operation", Aachen University, 20	002.	
LIST OF EXPERIMENT:		
1. Study of Two point starter		
2. Study of Three point starter		
3. Load test on DC series motor		
4. Load test on DC Shunt motor		
5. Speed control of DC shunt motor u		
6. Speed control of DC shunt motor u		
7. Open circuit characteristics of DC		
8. Load Test on Three Phase Squirrel		

9. Speed control of three phase slip ring induction motor

MECHANICS OF SOLIDS

L	Т	Р	J	С
3	1	0	0	4

Course Outcomes

After s	uccessful completion of this course, the students should be able to	
CO1:	Recognize the elastic response of the materials and calculate the stresses and deflection in simple and compound bars	K2
CO2:	Calculate the thermal stresses and the material response due to temperature variations	K2
CO3:	Find the stresses in bi-axial load system and strain energy for different loads	K2
CO4:	Develop the shear force, bending moment diagram and locate maximum values of shear force and bending moments induced in various types of beams.	K2
CO5:	Estimate the slope and deflection of beams under various loading conditions and crippling load for a column with different end conditions.	K3
CO6:	Determine the power transmitting, torque carrying capacities of the circular shafts and required thickness of the pressure vessel for a given internal pressure.	K2

Pre-requisite

U18MET2001 Engineering Mechanics

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М		М										S	М
CO2	S		М										S	М
CO3	М		М										S	
CO4	М		М										S	W
CO5	S		М										S	W
CO6	S		S										S	М

DIRECT	INDIRECT
1. Continuous Assessment Test I,II	1.Course end survey
2. Assignment: Group Presentation, Project report,	
Poster preparation, Prototype or Product	
Demonstration etc. (as applicable)	
3. End Semester Examination	
ELASTIC RESPONSE OF MATERIALS	12 Hours

Introduction to elastic response – stresses (tensile, compressive, shear & bending) & strength – strain and deformation, stress-strain curve for steel. Stresses and deformation of simple and compound bars under axial loads - Elastic constants and their relations -Thermal stresses and creep.

 BI-AXIAL STRESSES AND STRAIN ENERGY
 12 Hours

 Principal stresses – Introduction, significance, calculation of principal stresses - Mohr's circle to find

 principal stresses. Strain energy in gradually applied loads, suddenly applied loads and Impact loads

 CENDERGY

STRESSES IN BEAMS

12 Hours

Types of beams: supports and loads – Cantilever, simply supported and Overhanging beams - Shear force and bending moment diagrams. Stresses in beams – theory of simple bending and its applicability for actual conditions effect of shape of beams on stress induced - Bending stress and flexural strength.

DEFLECTION OF BEAMS

12 Hours

Elastic curve– Evaluation of beam: Double integration method & Macaulay's method. Columns: End conditions, equivalent length – Euler's equation and its limitations – slenderness ratio – Rankine's formula for columns

TORSION OF CIRCULAR SECTIONS AND DESIGN OF PRESSURE VESSELS12 Hours

Analysis of torsion of circular bars – shear stress distribution – twist and torsional stiffness – Bars of solid and hollow circular sections. Thin cylinders and shells – Hoop stress and longitudinal stresses.

Theory:45Hours	Practical:30Hours	TotalHours:75
REFERENCES:		
1. Ramamrutham	S, "Strength of materials", 14th Edition, 1	Dhanpat Rai Publishing Company, 2014.
2. Rattan S S, "St	rength of materials", 3 rd edition, McGraw	y Hill, 2016.
3. Ferdinand Beer	and Russell Johnston Jr., "Mechanics of	materials", 8 th edition, Tata McGraw Hill

- 2020.
 4. Nash, William. Schaum's Outline of Strength of Materials, 6th Edition. United Kingdom, McGraw-Hill Education, 2013.
- 5. RC hibbeler, "mechanics of materials", 9th edition, Pearson, 2014.

U18MCT3104

FLUID MECHANICS AND THERMAL SCIENCES

L	Т	Р	J	С
3	1	0	0	4

Course Outcomes

After s	successful completion of this course, the students should be able to	
CO1:	Describe the properties of fluids and its importance in selection of fluid for suitable application.	K2
CO2:	Apply the concept of fluid statics to determine the pressure and forces on plane and curved surfaces.	K2
CO3:	Differentiate the types of flow with its characteristics and also calculate the flow rate by applying concept of fluid kinematics and dynamics.	K2
CO4:	Identify the major and minor losses involved in the fluid flow through pipes.	K2
CO5:	Explain the concept of boundary layer and methods of preventing the boundary layer separation.	K3
CO6:	Summarize the laws of thermodynamics and concept of heat transfer mechanisms in energy interactions.	K2

Pre-requisite

Nil

CO/PO Mapping														
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs	Programme Outcomes(POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М													
CO2	S													W
CO3	S	М												W
CO4	S	S												W
CO5	W													
CO6	М				W									W
C														

DIRECT	INDIRECT					
 Continuous Assessment Test I,II Assignment: Group Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc. (as applicable) End Semester Examination 	1.Course end survey					
PROPERTIES OF FLUIDS AND FLUID STATICS 14 Hours						
Fluid-definition, distinction between solid and fluid-Units and dimensions–Properties of fluids- density, specificweight, specificvolume, specificgravity, temperature, viscosity, compressibility, vapor						

pressure, capillary and surface tension. Fluid statics: Pascal law - Hydrostatic law - Pressure measu	
using Manometers and pressure gauges - Forces on immersed plane and curved surfaces – Buoyancy – centre - Stability of floating and submerged bodies.	Meta-
FLIUD KINEMATICS AND FLUID DYNAMICS	10 Hours
Fluid Kinematics – Types of flow - velocity and acceleration - continuity equation. Fluid dyna	umics -
equations of motion - Euler's equation along streamline - Bernoulli's equation – Applications - meter, Orifice meter, Pitot tube	
FLUID FLOW AND BOUNDARY LAYER CONCEPTS	12 Hours
Hagen Poiseuille Equation - Darcy Welsbach equation - Friction factor - Major and minor ene	ergy losses -
Flow through pipes in series and in parallel. Types of Boundary layer thickness – Boundary la	yer
separation – Methods of preventing the boundary layer separation.	
LAWS OF THERMODYNAMICS	12 Hours
Zeroth law of thermodynamics – Measuring temperature, Thermal expansion, absorption of he	
and liquids. First law of thermodynamics - First law applied to flow and non-flow process. Se	cond law of
thermodynamics – Entropy	
HEAT TRANSFER MECHANISMS	12 Hours
Heat transfer mechanisms: Conduction – Fourier's Law, thermal resistance. Convection – New	vton's law of
cooling. Radiation – Wien's law, Kirchhoff's law, Stefan-Boltzmann law. Heat exchangers – I	vton's law of
cooling. Radiation – Wien's law, Kirchhoff's law, Stefan-Boltzmann law. Heat exchangers – I NTU – Fins.	vton's law of LMTD –
cooling. Radiation – Wien's law, Kirchhoff's law, Stefan-Boltzmann law. Heat exchangers – INTU – Fins.Theory:45 HoursTotal	vton's law of
cooling. Radiation – Wien's law, Kirchhoff's law, Stefan-Boltzmann law. Heat exchangers – I NTU – Fins.Theory:45 HoursTutorials:15HoursTotalkREFERENCES:ConstraintsConstraints	vton's law of LMTD –
cooling. Radiation – Wien's law, Kirchhoff's law, Stefan-Boltzmann law. Heat exchangers – INTU – Fins.Theory:45 HoursTotal	vton's law of LMTD –
cooling. Radiation – Wien's law, Kirchhoff's law, Stefan-Boltzmann law. Heat exchangers – I NTU – Fins.Theory:45 HoursTutorials:15HoursTotalkREFERENCES:ConstraintsConstraints	vton's law of LMTD –
 cooling. Radiation – Wien's law, Kirchhoff's law, Stefan-Boltzmann law. Heat exchangers – I NTU – Fins. Theory:45 Hours Tutorials:15Hours TotalF REFERENCES: White FM., "Fluid Mechanics", 6th Edition, Tata McGraw-Hill, New Delhi,2018. CengelYA., CimbalaJM., "FluidMechanics",4th Edition, McGraw Hill higher education, 2019. Modi PN., Seth SM., Hydraulics and Fluid Mechanics Including Hydraulics Machines. Publisher and Distributors, 2019 	vton's law of LMTD – Hours:60 India, Amit
 cooling. Radiation – Wien's law, Kirchhoff's law, Stefan-Boltzmann law. Heat exchangers – I NTU – Fins. Theory:45 Hours Tutorials:15Hours Total REFERENCES: White FM., "Fluid Mechanics", 6th Edition, Tata McGraw-Hill, New Delhi,2018. CengelYA., CimbalaJM., "FluidMechanics", 4th Edition, McGraw Hill higher education, 2019. Modi PN., Seth SM., Hydraulics and Fluid Mechanics Including Hydraulics Machines. 	vton's law of LMTD – Hours:60 India, Amit
 cooling. Radiation – Wien's law, Kirchhoff's law, Stefan-Boltzmann law. Heat exchangers – I NTU – Fins. Theory:45 Hours Tutorials:15Hours Totalf REFERENCES: White FM., "Fluid Mechanics", 6th Edition, Tata McGraw-Hill, New Delhi,2018. CengelYA., CimbalaJM., "FluidMechanics", 4th Edition, McGraw Hill higher education, 2019. Modi PN., Seth SM., Hydraulics and Fluid Mechanics Including Hydraulics Machines. Publisher and Distributors, 2019 Bansal RK., "Fluid Mechanics and Hydraulics Machines", 9th edition, Laxmi publicatio Ltd.,New Delhi, 2011. Ramamirtham S., "Fluid Mechanics and Hydraulics and Fluid Machines", Dhanpat Rai a Sons,Delhi, 2006. 	vton's law of LMTD – Hours:60 India, Amit ns (P)
 cooling. Radiation – Wien's law, Kirchhoff's law, Stefan-Boltzmann law. Heat exchangers – I NTU – Fins. Theory:45 Hours Tutorials:15Hours Totalf REFERENCES: White FM., "Fluid Mechanics", 6th Edition, Tata McGraw-Hill, New Delhi,2018. CengelYA., CimbalaJM., "FluidMechanics",4th Edition, McGraw Hill higher education, 2019. Modi PN., Seth SM., Hydraulics and Fluid Mechanics Including Hydraulics Machines. Publisher and Distributors, 2019 Bansal RK., "Fluid Mechanics and Hydraulics Machines", 9th edition, Laxmi publication Ltd.,New Delhi, 2011. Ramamirtham S., "Fluid Mechanics and Hydraulics and Fluid Machines", Dhanpat Rai and Pluid Machines Pluid Machines. 	vton's law of LMTD – Hours:60 India, Amit ns (P)

5	and
Signature of BC	OS chairman, M

U18INI3600

ENGINEERING CLINIC - III

L	Т	Р	J	С
0	0	4	2	3

Course Outcomes

After s	uccessful completion of this course, the students should be able to	
CO1:	Identify a practical problem and find a solution.	K2
CO2:	Understand the project management techniques	K2
CO3:	Demonstrate their technical report writing and presentation skills	K2

Pre-requisite

Nil

CO/PO Mapping

	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak															
COs		Programme Outcomes(POs)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	S	S	S	S	S	М	W		S			S				
CO2											S					
CO3										S						

Course Assessment methods:

DIRECT	INDIRECT
1. Project reviews 50%	
2. Workbook report 10%	1. Course Exit Survey
3. Demonstration & Viva-voce 40%	

Content:

The course will offer the students with an opportunity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide the students with ample opportunity to be innovative in designing and building a range of products from toys to robots and flying machines. In the third semester, students will focus primarily on design project combining concepts learnt in Engineering clinics I and II

GUIDELINES:

1. Practical based learning carrying credits.

2. Multi-disciplinary/ Multi-focus group of 5-6 students.

3. Groups can select to work on a specific task, or projects related to real world problems.

4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group as well as individual students.

5. The students have to display their model in the 'Engineering Clinics Expo' at the end of semester.

6. The progress of the course is evaluated based on reviews and final demonstration of prototype.

7. Multi-disciplinary/ multi-focus group of 5-6 students.

Total Hours: 90

5 Signature of BOS chairman, MCE

	FAMILY VALUES	L	Т	Р	J	С
U18VEP3503	(Mandatory)	0	0	2	0	0

Course Outcomes

After s	After successful completion of this course, the students should be able to							
CO1:	Develop skills in maintaining the harmony in the family.							
CO2:	Create impulsive activities for healthy family							
CO3:	Be receptive to troubled Individuals							
CO4:	Gain healthy life by practicing Kundalini Yoga & Kayakalpa							
CO5:	Possess Empathy among family members.							
CO6:	Reason the life and its significance							

Pre-requisite

- 1. U17VEP1501 / PERSONALVALUES
- 2. U17VEP2502 / INTERPERSONALVALUES

2. 01	2. OTFVER 2502 / INTERNERSONAL VALUES														
	CO/PO Mapping														
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs		Programme Outcomes(POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1									S						
CO2							М								
CO3										М					
CO4												S			
CO5						S									
CO6								М							

DIRECT	INDIRECT									
1. Group Activity / Individual performance	1. Mini project on values / Goodwill Recognition									
and assignment										
2. Assessment on Value work sheet /Test										
Values through Practical activities:										
1. Family system: Introduction to Family Values	– elements of family values – Adjustment,									
Tolerance, Sacrifice - Family structure in different	Tolerance, Sacrifice - Family structure in different society – work life balance.									
2. Peace in Family : Family members and their responsibility - Roles of parents, children, grant parents										
Respectable women hood	Respectable women hood									

- 3. **Core value: Empathy:** Unconditional love Respect Compassion sacrifice–Care &share -helping emotional support- hospitality cleanliness
- 4. **Blessing:** Blessing methods Vibration effect Benefits Reason for misunderstanding in the Family and resolution through blessings.
- 5. **Healthy Family:** Good relationship with neighbors Counseling Simplified Kundalini Yoga -Kaya Kalpa Yoga

	Workshop mode												
	REFERENCES												
1.	FAMILY - www.download.nos.org/331courseE/L-13%20FAMILY.pdf												
2.	FRAMEWORKFOR ACTIONON VALUESEDUCATION IN EARLY												
	CHILDHOOD – UNESCO – PDF –												
	www.unesdoc.unesco.org/images/0012/001287/128712e.pdf												
3.	TRUE FAMILY VALUES Third Edition – Tparents Home												
4.	www.tparents.org/Library/Unification/Books/TFV3/_TFV3.pdf												
5.	FAMILY VALUES IN A HISTORICAL PERSPECTIVE - The Tanner Lecture son												
	www.tannerlectures.utah.edu/_documents/a-to-z/s/Stone95.pdf												
6.	PROBLEMS OF INDIA'S CHANGING FAMILY AND STATE the United Nations -												
	www.un.org/esa/socdev/family/docs/egm09/Singh.pdf												

SEMESTER IV

5. Signature of BOS chairman, MCE

U18MAT4101

NUMERICAL METHODS AND

PROBABILITY

L	Т	Р	J	С
3	1	0	0	4

Course Outcomes

After	After successful completion of this course, the students should be able to									
CO1:										
	equations.									
CO2:	Analyze and apply the knowledge of interpolation and determine the integration and differentiation of the									
	functions by using the numerical data.									
CO3:	Predict the dynamic behavior of the system through solution of ordinary									
CO4:	differential equations by using numerical methods.									
CO5:	Apply the concepts of probability, conditional probability and total probability.									
CO6:	Analyze random or unpredictable experiments and investigate important features of random experiments.									
Dres res										

Pre-requisite

Nil

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes COs (POs) PO1 PO2 PO3 PO4 PO6 PO7 PO8 PO9 PO10 PO11 PSO2 PO5 PO12 PSO1 **CO1** S S **CO2** S S CO3 S S Μ **CO4** S Μ Μ S **CO5** S S Μ Μ Μ **CO6** S S

Course Assessment methods: DIRECT **INDIRECT** 1. Continuous Assessment Test I.II 2. Assignment: Group Presentation, Project report, 1. Course Exit Survey Prototype or Product Demonstration etc. (as applicable) End Semester Examination 3. SOLUTION OF EQUATIONS AND EIGEN VALUE PROBLEMS 9+3Hours Linear interpolation method – Iteration method – Newton's method – Solution of linear system By Gaussian elimination and Gauss-Jordan Methods-Iterative methods: GaussJacobiandGauss-Seidel methods - Inverse of matrix by Gauss - Jordan method - Eigenvalues of a matrix by Power method. INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICAL 9+3Hours **INTEGRATION** Lagrange's and Newton's divided difference interpolation – Newton's forward and backward difference interpolation – Approximation of derivatives using interpolation polynomials – Numerical integration using Trapezoidal and Simpson's rules. 9+3Hours NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS Single step methods: Taylor's series method – Euler and Improved Euler methods for solving first order equations – Fourth order Runge – Kutta method for solving first and second order equations – Multistep method: Milne's predictor and corrector method. PROBABILITY 3+1Hours Measures of central tendency: Mean Median and Mode - Measures of variation - Range, standard deviation, Mean deviation and coefficient of variation - Correlation and Regression: Karl Pearson's coefficient of correlation - Rank Correlation - Regression lines. 6+2Hours **RANDOM VARIABLES** Random variable - Distribution function - properties - Probability mass function - Probability density function – moments and moment generating function – properties. STANDARD DISTRIBUTIONS 9+3Hours Binomial, Poisson and Normal distributions – Moments, Moment Generating functions and properties for the above distributions - Fitting of Binomial and Poisson distributions. Tutorials: 15Hours Total: 60Hours **Theory:45Hours REFERENCES:** 1. Grewal, B. S. Numerical Methods in Engineering and Science: C, C++, and Matlab. India, Mercury Learning and Information, 2018. 2. Gerald, Curtis F. Applied Numerical Analysis. India, Pearson Education, 2004. 3. Chapra, Steven C., et al. Numerical Methods for Engineers. Singapore, McGraw-Hill Education, 2015. 4. Miller, Irwin, et al. Miller & Freund's Probability and Statistics for Engineers. United Kingdom, Pearson, 2017. 5. Myers, Sharon L., et al. Probability & Statistics for Engineers & Scientists, EBook, Global Edition. United Kingdom, Pearson Education, 2016.

Saul Signature of BOS chairman, MCE

HYDRAULICS AND PNEUMATICS

Course Outcomes

After s	After successful completion of this course, the students should be able to								
CO1:	Describe the concept of fluid power and different types of fluid power systems.	K2							
CO2:	Explain the working principles of different types of hydraulic pumps.	K2							
CO3:	Discuss the working principles of different types of hydraulic actuators.	K2							
CO4:	Summarize the working principles of compressors and pneumatic components.	K2							
CO5:	Design hydraulic and pneumatic circuits for simple applications.	K3							
CO6:	Explain the concept of fluid logic control systems, maintenance of fluid power systems.	K2							

Pre-requisite

Nil

	CO/PO Mapping														
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	Programme Outcomes(POs)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	М													М	
CO2	М	М												М	
CO3	М													М	
CO4	М													М	
CO5	S	М			S								М	М	
CO6	М													М	

DIRECT	INDIRECT						
 Continuous Assessment Test I,II Assignment: Group Presentation, Project report, Prototype or Product Demonstration etc. (as applicable) End Semester Examination 	1. Course end survey						
FUNDAMENTALS OF FLUID POWER6 Hours							
Introduction to fluid power, Advantages of fluid power, Application of fluid power system. Types of fluid							

power systems, Properties of hydraulic fluids – General types of fluids. Fluid power symbols. HYDRAULIC SYSTEM AND COMPONENTS **10 Hours** Pumping theory – Pump classification – Gear pump, Vane Pump, piston pump, construction and working of pumps – pump performance – Variable displacement pumps. Linear hydraulic actuators – Types of hydraulic cylinders-Single acting, Double acting special cylinders like tandem, Rodless, Telescopic-Construction and application.Cushioningmechanism,Rotaryactuators-Gear,VaneandPistonmotors-SelectionofPumps and actuators. **10 Hours** HYDRAULIC VALVES, ACCUMULATORS AND CIRCUITS Directional control value -3/2 way value -4/2, 4/3 way value - Shuttle value - check value. Pressure control valves, Flow control valve - Fixed and adjustable, electrical control solenoid valves. Types of accumulators, Accumulators circuits, Intensifier - Circuit and Application, Speed control circuits, synchronizing circuit and industrial application circuits - copying circuit and press circuit. PNEUMATIC SYSTEMS, COMPONENTS AND CIRCUITS **10 Hours** Properties of air - Compressors - Filter, Regulator, and Lubricator Unit - Air control valves, Quick exhaust valves and pneumatic actuators. Pneumo hydraulic circuit, Sequential circuit design for simple applications using cascade method, Karnaugh – Veitch Mapping method. FLUID LOGIC CONTROL SYSTEMS AND MAINTENANCE 9Hours Hydro Mechanical servo systems, Electro-hydraulic and Electro-pneumatic systems and proportional valves. Fluidic Logic and switching controls - PLC applications in fluid power control, Maintenance - Failure and trouble shooting in fluid power systems. **Theory:45Hours Practical: 30Hours Total: 75Hours REFERENCES:** 1. Anthony Esposito, "Fluid Power with Applications", Pearson Education Inc., 7th Edition 2016. 2. Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw-Hill, 2012. 3. James A. Sullivan, "Fluid Power: Theory and Applications", C.H.I.P.S, 4th edition, 2013. 4. Andrew Parr, "Hydraulics and Pneumatics", Jaico Publishing House, 2012 5.Srinivasan R, "Hydraulic and Pneumatic Controls", McGraw Hill Education, 2016. LIST OF EXPERIMENTS **Pneumatic Experiments** Design of simple pneumatic circuit to control the direction and speed of single acting/double acting 1. cylinder using push button DCV/lever operated DCV and flow control valve. Design of Pneumatic circuit using shuttle valve (OR function) and dual pressure valve (AND function). 2. Design of Pneumatic circuit for automatic reciprocation of single pneumatic cylinder using pilot 3. operated DCV and roller operated DCV. Design of Electropneumatic circuit (Relay control) for automatic reciprocation of single pneumatic 4. cylinder using solenoid operated DCV and magnetic sensors. Design of Pneumatic/ Electropneumatic circuit (Relay control) for synchronization of multiple 5. pneumatic cylinders. Design of Pneumatic/ Electropneumatic circuit (Relay control) for sequential operation of multiple 6. pneumatic cylinders. 7. Design of Pneumatic circuit for sequential operation of multiple pneumatic cylinders using Cascade method. Design of Electropneumatic circuit for sequential operation of multiple cylinders using PLC. 8. **Hydraulic Experiments** 9. Design of Hydraulic circuit to control the speed and direction of a hydraulic motor. 10. Design of Hydraulic circuit for sequential operation of two hydraulic cylinders using pressure sequence valve. Signature of BOS chairman, MCE

11. Study of the working of Counterbalance valve, Accumulator, Proportional control valve.

Software Experiments

12. Design and Simulation of hydraulic and pneumatic circuits using Automation Studio software.

 \leq -Signature of BOS chairman, MCE

U18MCI4202

SENSORS AND INSTRUMENTATION

Course Outcomes

0 0 0 = 10 0											
After s	fter successful completion of this course, the students should be able to										
CO1:	Classify the transducers and instruments based on their working principles, characteristics a nd order of the system.										
CO2:	Describe the working principle and characteristics of non-electrical transducers.	K2									
CO3:	Discuss about the construction, working principles and characteristics of bio medical sensors.	K2									
CO4:	Generate appropriate design procedure, suitable for signal conversion to interface with computer.	K2									
CO5:	Design appropriate circuits by using conventional formulas used in signal conditioning and conversion.	K2									
CO6:	Use sensors and transducers to create simple Mechatronics applications using data logging software	K2									

Pre-requisite Nil

						CC)/PO N	Ларріі	ıg						
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COa	Programme Outcomes(POs)														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	S			W									W		
CO2	S			М	М								М		
CO3	S			М	М								М		
CO4	S	М	S	S	М								S	М	
CO5	М	М	S	S	М								S	М	
CO6	Μ	М		S	S								S		

DIRECT	INDIRECT								
1. Continuous Assessment Test I,II									
2. Assignment: Group Presentation, Project report,									
Prototype or Product Demonstration etc. (as	1.Course end survey								
applicable)									
3. End Semester Examination									
MEASUREMENT SYSTEMS		9 Hours							
Generalized Measurement System – Performance Characte	ristics: Static and Dynamic Characteristics – I	Errors in							
Measurements - statistical Analysis of errors - Calibration	and Standards – Generalized Performance of Z	Zero Order,							
First Order and Second Order Systems – Classifications of Transducers.									
MEASUREMENT OF NON-ELECTRICAL PARAMETERS-1									

Linear and angular displacement: Resistive, capacitive, inductive types and Optics (encoders)	, proximity
sensors Velocity measurement: tachometers, tacho generators and resolvers	
Temperature measurement: Contact type: Bimetallic, RTD, Thermocouple and Thermistor No	n- Contact
type:	
Radiation Pyrometer – Optical Pyrometer	
Humidity: Capacitive and resistive and hot and wet bulbs.	
Other sensors: Fire, smoke and metal detectors.	
MEASUREMENT OF NON-ELECTRICAL PARAMETERS-2	9 Hours
Force measurement: Resistive type strain gauges: Bridge configurations, Temperature compen	sation, Load
cells, Fiber optic strain gauge- Semiconductor strain gauges- Piezo electric transducers.	
Vacuum Measurement : McLeod Gauge, Thermal Conductivity Gauge – Ionization Gauge.	
Airflow: Anemometers	
Light: UV, IR, Light emitter and detector	
Introduction to Acoustics and acoustic sensors: Ultrasonic sensor- Types and working of Mic	rophones
and Hydrophones – Sound level meters- Nuclear radiation sensors.	1
MEASUREMENT OF BIO SIGNALS	9 Hours
Basic transducer principle Types - source of bioelectric potentials - electrode - electrolyte interf	ace,
electrode potential, resting and action potential – electrodes for their measurement, ECG, EEG.	
SIGNAL CONDITIONING AND DATA ACQUISITION	9 Hours
Amplification, Filtering – Level conversion – Linearization - Buffering – Sample and Hold circu	ıit —
Quantization –	
Multiplexer / Demultiplexer – Analog to Digital converter – Digital to Analog converter- I/P and	₫ P/I
converter - Instrumentation Amplifier-V/F and F/V converter- Data Acquisition -Data Logging	
 Data conversion – Introduction to Digital Transmission system. Theory:45Hours Practical:30Hours Total Hours:75 	
Theory:45HoursPractical:30HoursTotal Hours:75	
DEFEDENCES.	
REFERENCES:	
1. ErnestODoebelin, "MeasurementSystems-ApplicationsandDesign", TataMcGraw-Hill, 201	2.
 ErnestODoebelin, "MeasurementSystems–ApplicationsandDesign", TataMcGraw-Hill, 201 Patranabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2010. 	
 ErnestODoebelin, "MeasurementSystems–ApplicationsandDesign", TataMcGraw-Hill, 201 Patranabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2010. JohnTurner and MartynHill, "InstrumentationforEngineersandScientists", OxfordScienceP 	
 ErnestODoebelin, "MeasurementSystems-ApplicationsandDesign", TataMcGraw-Hill, 201 Patranabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2010. JohnTurner and MartynHill, "InstrumentationforEngineersandScientists", OxfordScienceP, 2009 	ublications
 ErnestODoebelin, "MeasurementSystems-ApplicationsandDesign", TataMcGraw-Hill, 201 Patranabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2010. JohnTurner and MartynHill, "InstrumentationforEngineersandScientists", OxfordScienceP, 2009 Sawney A K and Puneet Sawney, "A Course in Mechanical Measurements and Instrumer 	ublications
 ErnestODoebelin, "MeasurementSystems-ApplicationsandDesign", TataMcGraw-Hill, 201 Patranabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2010. JohnTurner and MartynHill, "InstrumentationforEngineersandScientists", OxfordScienceP, 2009 Sawney A K and Puneet Sawney, "A Course in Mechanical Measurements and Instrumer Control", 12thedition, Dhanpat Rai & Co, New Delhi, 2013. 	ublications
 ErnestODoebelin, "MeasurementSystems-ApplicationsandDesign", TataMcGraw-Hill, 201 Patranabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2010. JohnTurner and MartynHill, "InstrumentationforEngineersandScientists", OxfordScienceP, 2009 Sawney A K and Puneet Sawney, "A Course in Mechanical Measurements and Instrumer Control", 12thedition, Dhanpat Rai & Co, New Delhi, 2013. LIST OF EXPERIMENTS 	ublications
 ErnestODoebelin, "MeasurementSystems-ApplicationsandDesign", TataMcGraw-Hill, 201 Patranabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2010. JohnTurner and MartynHill, "InstrumentationforEngineersandScientists", OxfordScienceP, 2009 Sawney A K and Puneet Sawney, "A Course in Mechanical Measurements and Instrumer Control", 12thedition, Dhanpat Rai & Co, New Delhi, 2013. LIST OF EXPERIMENTS Design and testing of Voltage to frequency converter and frequency to voltage converter 	ublications
 ErnestODoebelin, "MeasurementSystems-ApplicationsandDesign", TataMcGraw-Hill, 201 Patranabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2010. JohnTurner and MartynHill, "InstrumentationforEngineersandScientists", OxfordScienceP, 2009 Sawney A K and Puneet Sawney, "A Course in Mechanical Measurements and Instrumer Control", 12thedition, Dhanpat Rai & Co, New Delhi, 2013. LIST OF EXPERIMENTS Design and testing of Voltage to frequency converter and frequency to voltage converter Design and testing of sample and hold circuit. 	ublications ntation and
 ErnestODoebelin, "MeasurementSystems-ApplicationsandDesign", TataMcGraw-Hill, 201 Patranabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2010. JohnTurner and MartynHill, "InstrumentationforEngineersandScientists", OxfordScienceP, 2009 Sawney A K and Puneet Sawney, "A Course in Mechanical Measurements and Instrumer Control", 12thedition, Dhanpat Rai & Co, New Delhi, 2013. LIST OF EXPERIMENTS Design and testing of Voltage to frequency converter and frequency to voltage converter Design and testing of sample and hold circuit. Displacement measurement using potentiometer and LVDT and plotting the characteristic cur 	ublications ntation and
 ErnestODoebelin, "MeasurementSystems-ApplicationsandDesign", TataMcGraw-Hill, 201 Patranabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2010. JohnTurner and MartynHill, "InstrumentationforEngineersandScientists", OxfordScienceP, 2009 Sawney A K and Puneet Sawney, "A Course in Mechanical Measurements and Instrumer Control", 12thedition, Dhanpat Rai & Co, New Delhi, 2013. LIST OF EXPERIMENTS Design and testing of Voltage to frequency converter and frequency to voltage converter Design and testing of sample and hold circuit. Displacement measurement using potentiometer and LVDT and plotting the characteristic cur Study of Characteristics and calibration of strain gauge and Load Cell 	ublications ntation and
 ErnestODoebelin, "MeasurementSystems–ApplicationsandDesign", TataMcGraw-Hill, 201 Patranabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2010. JohnTurner and MartynHill, "InstrumentationforEngineersandScientists", OxfordScienceP, 2009 Sawney A K and Puneet Sawney, "A Course in Mechanical Measurements and Instrumer Control", 12thedition, Dhanpat Rai & Co, New Delhi, 2013. LIST OF EXPERIMENTS Design and testing of Voltage to frequency converter and frequency to voltage converter Design and testing of sample and hold circuit. Displacement measurement using potentiometer and LVDT and plotting the characteristic cur Study of Characteristics and calibration of strain gauge and Load Cell Measurement of strain using resistive type strain gauges with temperature compensation 	ublications ntation and
 ErnestODoebelin, "MeasurementSystems-ApplicationsandDesign", TataMcGraw-Hill, 201 Patranabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2010. JohnTurner and MartynHill, "InstrumentationforEngineersandScientists", OxfordScienceP, 2009 Sawney A K and Puneet Sawney, "A Course in Mechanical Measurements and Instrumer Control", 12thedition, Dhanpat Rai & Co, New Delhi, 2013. LIST OF EXPERIMENTS Design and testing of Voltage to frequency converter and frequency to voltage converter Design and testing of sample and hold circuit. Displacement measurement using potentiometer and LVDT and plotting the characteristic cur Study of Characteristics and calibration of strain gauge and Load Cell Measurement of strain using resistive type strain gauges with temperature compensation and various bridge configurations 	ublications ntation and wes.
 ErnestODoebelin, "MeasurementSystems–ApplicationsandDesign", TataMcGraw-Hill, 201 Patranabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2010. JohnTurner and MartynHill, "InstrumentationforEngineersandScientists", OxfordScienceP, 2009 Sawney A K and Puneet Sawney, "A Course in Mechanical Measurements and Instrumer Control", 12thedition, Dhanpat Rai & Co, New Delhi, 2013. LIST OF EXPERIMENTS Design and testing of Voltage to frequency converter and frequency to voltage converter Design and testing of sample and hold circuit. Displacement measurement using potentiometer and LVDT and plotting the characteristic cur Study of Characteristics and calibration of strain gauge and Load Cell Measurement of strain using resistive type strain gauges with temperature compensation 	ublications ntation and wes.
 ErnestODoebelin, "MeasurementSystems-ApplicationsandDesign", TataMcGraw-Hill, 201 Patranabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2010. JohnTurner and MartynHill, "InstrumentationforEngineersandScientists", OxfordScienceP, 2009 Sawney A K and Puneet Sawney, "A Course in Mechanical Measurements and Instrumer Control", 12thedition, Dhanpat Rai & Co, New Delhi, 2013. LIST OF EXPERIMENTS Design and testing of Voltage to frequency converter and frequency to voltage converter Design and testing of sample and hold circuit. Displacement measurement using potentiometer and LVDT and plotting the characteristic cur Study of Characteristics and calibration of strain gauge and Load Cell Measurement of strain using resistive type strain gauges with temperature compensation and various bridge configurations Temperature measurement using Thermocouple, Thermistor and RTD and comparing the characteristics 	ublications ntation and wes.
 ErnestODoebelin, "MeasurementSystems–ApplicationsandDesign", TataMcGraw-Hill, 201 Patranabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2010. JohnTurner and MartynHill, "InstrumentationforEngineersandScientists", OxfordScienceP, 2009 Sawney A K and Puneet Sawney, "A Course in Mechanical Measurements and Instrumer Control", 12thedition, Dhanpat Rai & Co, New Delhi, 2013. LIST OF EXPERIMENTS Design and testing of Voltage to frequency converter and frequency to voltage converter Design and testing of sample and hold circuit. Displacement measurement using potentiometer and LVDT and plotting the characteristic cur Study of Characteristics and calibration of strain gauge and Load Cell Measurement of strain using resistive type strain gauges with temperature compensation and various bridge configurations Temperature measurement using Thermocouple, Thermistor and RTD and comparing the characteristics Measurement of sound using microphones and sound level meter. 	ublications ntation and wes.
 ErnestODoebelin,"MeasurementSystems–ApplicationsandDesign", TataMcGraw-Hill, 201 Patranabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2010. JohnTurner and MartynHill,"InstrumentationforEngineersandScientists", OxfordScienceP, 2009 Sawney A K and Puneet Sawney, "A Course in Mechanical Measurements and Instrumer Control", 12thedition, Dhanpat Rai & Co, New Delhi, 2013. LIST OF EXPERIMENTS Design and testing of Voltage to frequency converter and frequency to voltage converter Design and testing of sample and hold circuit. Displacement measurement using potentiometer and LVDT and plotting the characteristic cur Study of Characteristics and calibration of strain gauge and Load Cell Measurement of strain using resistive type strain gauges with temperature compensation and various bridge configurations Temperature measurement using Thermocouple, Thermistor and RTD and comparing the characteristics 	ublications ntation and wes.

DIGITAL ELECTRONICS AND MICROPROCESSOR

L	Т	Р	J	С
3	1	0	0	4

Course Outcomes

After successful completion of this course, the students should be able to											
CO1:	Use number systems, Boolean algebra and explain various digital logic families.	K2									
CO2:	Apply basic logic gates to design simple circuits and simplify logic circuits using K- Map	K3									
CO3:	Design various combinational and sequential circuits	K3									
CO4:	Explain the architecture of 8085 microprocessor	K2									
CO5:	Develop assembly language program for 8085 for the given application.	K3									
CO6:	Construct interface for memory and I/O devices.	K3									

Pre-requisite

U18MCI3201-Electronics devices and circuits

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М												М	
CO2	S	W	S										S	
CO3	М	S	S										М	М
CO4	М												S	М
CO5	М				S								М	S
CO6	М		S		S								М	S

DIRECT	INDIRECT
1. Continuous Assessment Test I,II	
2. Assignment: Group Presentation, Project	
report, Prototype or Product Demonstration	

etc. (as applicable) 3. End Semester Examination

1.Course end survey

9 Hours NUMBER SYSTEMS, DIGITAL LOGIC FAMILIES AND BOOLEAN LOGIC Introduction to Number systems: Binary, Octal, Hexadecimal, BCD, Gray code, Excess 3 code -Binary arithmetic: 1's complements, 2's complements, and Code conversions -Digital Logic Families: TTL, CMOS, NMOS, ECL- Performance comparison of various logic families- Boolean algebra: Basic Postulates and theorems, switching functions, Canonical forms, Logic gates- Simplification using Kmaps and Implementation using logic gates. **COMBINATIONAL CIRCUITS** 9 Hours Problem formulation and design of combinational circuits: adder, subtractor, Parallel adder and Subtractor- Carry look ahead adder- BCD adder, Magnitude Comparator, parity checker Encoder, decoder, Multiplexer/Demultiplexer, codeconverters, Functionrealizationusinggates and multiplexers. Implementation of Combinational circuits using Multiplexers and Demultiplexers- Memory: PROMs and PLAs. SEQUENTIAL CIRCUITS 9 Hours General model of sequential circuits: Latch, Flip Flops, Level triggering, Edge triggering, Master slave configuration - Realization of one flip flop using other flip flop- Registers-Counters: Binary counters, Modulo-n counter, Decade, Counters, Ring counter and Johnson counter. **MICROPROCESSOR 8085** 9 Hours Organization of 8085: Architecture, Internal Register Organization and Pin Configuration – Instruction Set of 8085 – addressing modes - instruction and machine cycles with states and timing diagram - 8085 assembly language programming MEMORY AND I/O INTERFACING 9 Hours Address space partitioning – address map – Address decoding – Designing decoder circuit for the given address map -I/O Interfacing- Peripheral ICs*: 8255, 8279 and 8251 A. * Emphasis to be given on architecture with simple applications. **Theory:45Hours Tutorials:15Hours TotalHours:60 REFERENCES:** 1. Morris Mano M. and CilettiM D., "Digital Design", 4th edition, Prentice Hall of India Pvt.Ltd., NewDelhi,2008 2. Donald P Leach, Albert Paul Malvino and Gautam Saha, "Digital Principles and Applications", 8 edition, Tata McGraw Hill Publishing Company Limited, New Delhi, Special Indian Edition, 2014. 3. Salivahanan S. and Arivazhagan S., "Digital Circuits and Design", 5th edition, oxford university press,2018 4. Ramesh Gaonkar, "Microprocessor Architecture, Programming and Applications with the 8085", 6th edition, Penram International (India),2013. 5. Aditya P Mathur, "Introduction to Microprocessor", 3rd edition, Tata McGraw Hill, New Delhi,2003 Floyd, "Digital electronics" Pearson Education India, 2005 6.

U18MCT4104	THEORY OF MACHINES	L	Т	Р	J	C
U 101VIC 14104	THEORY OF MACHINES	3	1	0	0	4

Course Outcomes

After s	After successful completion of this course, the students should be able to										
CO1:	Apply concepts of mechanisms to achieve desired motion transformation	K2									
CO2:	Choose appropriate gear train and friction drives for a given application	K3									
CO3:	Calculate various forces acting on rigid bodies under static and dynamic conditions	K3									
CO4:	Solve balancing problems related to rotating and reciprocating masses.	K2									
CO5:	Apply the fundamental concepts of vibrating system to predict the natural frequency and force transmitted	K3									

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S												S	М
CO2	М													М
CO3	М		М										М	
CO4	S		W										М	
CO5	S		W										М	

Course Assessment methods:

DIRECT	INDIRECT	
 Continuous Assessment Test I,II Assignment: Group Presentation, Project report, Prototype or Product Demonstration etc. (asapplicable) End SemesterExamination 	1.Course end survey	
ANALYSIS OF MECHANISMS		13 Hours

Basic Elements of Mechanisms - Introduction to kinematic links, pairs, chain, machine and structure,

degrees of freedom. Grashoff's law, Kutzback criterion. Kinematic inversions of four-bar and chain. Classifications of cam and follower, terminologies, follower motion. Velocity and acce	
analysis for Four bar chain and single slider crank mechanism.	
GEAR AND FRICTION DRIVES	12 Hours
Gear and Friction drives - Fundamentals of toothed gearing, spur gear terminology. Involute g profile. Gear meshing, contact ratio. Gear trains, simple compound gear trains and epicyclic g	-
Belt, Clutch (Including Problems) – Screw and Brake (Concept only).	
FORCE ANALYSIS	12Hours
Rigid Body dynamics in general plane motion – Equations of motion Static force analysis – D'Alemberts principle –The principle of superposition – Inertia force and Inertia torque – In Dynamic Analysis in Reciprocating Engines.	
BALANCING	9 Hours
masses rotating in single plane. Balancing of several masses rotating in different planes. Intre Balancing of reciprocating masses, Hammer blow, Swaying couple, Tractive force.	
Types of vibration, frequency of undamped and damped system. Response to periodic forcin Forcing - Forcing caused by unbalance-Support motion - Force transmissibility and amplitud transmissibility - Vibration isolation.	
Types of vibration, frequency of undamped and damped system. Response to periodic forcin Forcing - Forcing caused by unbalance-Support motion - Force transmissibility and amplitud	g - Harmonic
Types of vibration, frequency of undamped and damped system. Response to periodic forcin Forcing - Forcing caused by unbalance-Support motion - Force transmissibility and amplitud transmissibility - Vibration isolation.	g - Harmonic
Types of vibration, frequency of undamped and damped system. Response to periodic forcin Forcing - Forcing caused by unbalance-Support motion - Force transmissibility and amplitud transmissibility - Vibration isolation.Theory:45HoursTutorials:15HoursTotal Hours:60	g - Harmonic le
Types of vibration, frequency of undamped and damped system. Response to periodic forcin Forcing - Forcing caused by unbalance-Support motion - Force transmissibility and amplitud transmissibility - Vibration isolation. Theory:45Hours Tutorials:15Hours REFERENCES: 1. Rattan SS., "Theory of Machines", 5 th Edition, Tata McGraw-Hill Publishing Compared	g - Harmonic le
Types of vibration, frequency of undamped and damped system. Response to periodic forcin Forcing - Forcing caused by unbalance-Support motion - Force transmissibility and amplitud transmissibility - Vibration isolation. Theory:45Hours Tutorials:15Hours REFERENCES: 1. Rattan SS., "Theory of Machines", 5 th Edition, Tata McGraw-Hill Publishing Compa Delhi,2019. 2. R.L. Norton, "Kinematics and Dynamics of Machinery", Tata McGraw Hill Publishing	g - Harmonic le
Types of vibration, frequency of undamped and damped system. Response to periodic forcin Forcing - Forcing caused by unbalance-Support motion - Force transmissibility and amplitud transmissibility - Vibration isolation. Theory:45Hours Tutorials:15Hours Total Hours:60 REFERENCES: 1. Rattan SS., "Theory of Machines", 5 th Edition, Tata McGraw-Hill Publishing Compa Delhi,2019. 2. R.L. Norton, "Kinematics and Dynamics of Machinery", Tata McGraw Hill Publishing Ltd.,2017.	g - Harmonic le
Types of vibration, frequency of undamped and damped system. Response to periodic forcin Forcing - Forcing caused by unbalance-Support motion - Force transmissibility and amplitud transmissibility - Vibration isolation. Theory:45Hours Tutorials:15Hours Total Hours:60 REFERENCES: 1. Rattan SS., "Theory of Machines", 5 th Edition, Tata McGraw-Hill Publishing Compa Delhi,2019. 2. R.L. Norton, "Kinematics and Dynamics of Machinery", Tata McGraw Hill Publishing Ltd.,2017. 3. R.K. Bansal, "Theory of Machines", Lakshmi publications pvt.ltd.,2016	g - Harmonic le my Ltd.,New

L	Τ	Р	J	С
0	0	4	2	3

Course objectives

•	To help the students look into the functioning of simple to complex devices and systems
•	To enable the students to design and build simple systems on their own
•	To help experiment with innovative ideas in design and teamwork
•	To create an engaging and challenging environment in the engineering lab

Course Outcomes

After s	After successful completion of this course, the students should be able to					
CO1:	Identify a practical problem and find a solution	K2				
CO2:	Understand the project management techniques K3					
CO3:	CO3:Demonstrate their technical report writing and presentation skillsK3					

Pre-requisite

Nil

	CO/PO Mapping													
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs		Programme Outcomes(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	S	S	S	S	S	М	W		S			S		
CO2											S			
CO3										S				

Course Assessment methods:

DIRECT	INDIRECT
 Project reviews50% Workbook report10% Demonstration & Viva-voce40% 	1. Course Exit Survey

Content:

The course will offer the students with an opport unity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide the students with ample

opportunity to be innovative in designing and building a range of products from toys to robots and flyingmachines.Inthefourthsemester,studentswillfocusprimarilyonreverseengineeringprojectto improve performance of a product

GUIDELINES:

- 1. Practical based learning carrying credits.
- 2. Multi-disciplinary/ Multi-focus group of 5-6 students.
- 3. Groups can select to work on a specific tasks, or projects related to real world problems.
- 4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group as well as individual students.
- 5. The students have to display their model in the 'Engineering Clinics Expo' at the end of semester.
- 6. The progress of the course is evaluated based on reviews and final demonstration of prototype.

Total Hours: 90

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

Course	outcomes						
After s	uccessful completion of this course, the students should be able to						
CO1:	Analyze the impact of engineering solutions in a global and societal context.						
CO2:	Discuss contemporary issues that results in environmental degradation and would attempt to provide solutions to overcome those problems.						
CO3:	Highlight the importance of ecosystem and biodiversity.						
CO4:	Consider issues of environment and sustainable development in his/her personal and professional undertakings.						
CO5:	Paraphrase the importance of conservation of resources.						
CO6:	Play an important role in transferring a healthy environment for future generations.						
D							

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs						Progra	amme (Outcom	es(POs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		Μ					S		Μ					Μ
CO2						Μ				Μ				
CO3							Μ							
CO4						Μ	S							
CO5							S							
CO6			W				S					М		

Course Assessment methods:

DIRECT	INDIRECT						
1. Internal Test I							
2. Internal Test II							
3. Assignment	1.Course end survey						
4. End semester	-						
INTRODUCTION TO ENVIRONMENTAL STUDIES AND NATURAL 14 H							
RESOURCES							
Definition scope and importance. Need for public (wareness Forest resources: Use and over						

Definition, scope and importance – Need for public awareness – Forest resources: Use and overexploitation, deforestation, case studies – Timber extraction, mining, dams and their effects on forests and tribal people.

Water resources: Use and overutilization of surface and ground water, conflicts over water, dams– benefits and problems – Water conservation, rain water harvesting, watershed management. Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case

studies. Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, case studies. Energy resources: Growing energy needs, renewable and nonrenewable energy sources, use of alternate energy sources, case studies. Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification, Wasteland reclamation - Role of an individual in conservation of natural resources. ECOSYSTEMS AND BIODIVERSITY 9 Hours ECOSYSTEM: Concept of an ecosystem – Structure and function of an ecosystem: Producers, consumers and decomposers, Food chain, Food web, Energy flow in the ecosystem and Ecological pyramids Ecological succession _ Introduction, types, characteristic features. structureandfunctionofthe(a)Forestecosystem(b)Grasslandecosystem(c)Desertecosystem (d) Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries). **BIODIVERSITY:** Introduction to Biodiversity – Definition: genetic, species and ecosystem diversity – Bio geographical classification of India – Value of biodiversity: consumptive use. productive use, social, ethical, aesthetic values - India as a mega-diversity nation - Hot-spots of biodiversity - Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts -Endangered and endemic species of India-Conservation of biodiversity:In-situ and Ex-situ conservation of biodiversity. 8 Hours **ENVIRONMENTAL POLLUTION** Definition – Causes, effects and control measures of: (a) Air pollution – Organic and inorganic pollution - cyclone separator, electrostatic precipitator (b) Water pollution (c) Heavy metal pollution (d) Noise pollution (e) Thermal pollution (f) Nuclear hazards - Role of an individual in prevention of pollution -Pollution case studies - Solid waste and hazardous Management: Causes, effects and control measures from factories, small scale and large scale industries – Waste minimization – Disaster management: floods, earthquake, cyclone and landslides. SOCIAL ISSUES AND THE ENVIRONMENT 7 Hours From Unsustainable to Sustainable development – Urban problems related to energy – Resettlement and rehabilitation of people; its problems and concerns, case studies - Issues and possible solutions - Climate change, global warming, acid rain, ozone layer depletion – Environment Production Act – Air (Prevention and Control of Pollution) Act - Water (Prevention and control of Pollution) Act - Wildlife Protection Act – Forest Conservation Act - Issues involved in enforcement of environmental legislation - Human Rights. HUMAN POPULATION AND THE ENVIRONMENT 7 Hours Population growth and explosion – Welfare Program – Environment and human health – Communicable disease - Role of Information Technology in Environment and human health - Case studies. **Theory:45Hours** Practical:0Hours **Total Hours:45 REFERENCES:** 1. Spoolman, Scott, and Miller, G. Tyler. Environmental Science. United States, Cengage Learning, 2018. 2. Gilbert M. Masters and Wendell P. Ela, 'Introduction to Environmental Engineering and Science', Third Edition, Pearson Education, 2013. 3. Bharucha, Erach. The Biodiversity of India. India, Mapin Pub., 2002.

4. Trivedy, R K, and Goel, P K. An Introduction to Air Pollution. India, BSP Books Pvt. Limited, 2016.

5. Trivedy, R. K Handbook Of Environmental Laws, Acts, Guidelines, Compliances & Standards, 2	
Vol. Set, 3Rd Ed India, BS Publications, 2010	
6. Cunningham, W.P.Cooper and T.H.Gorhani, 'Environmental Encyclopedia', Jaico Publication	
House, Mumbai, 2011.	
7. WagerK.D., 'EnvironmentalManagement', W.B.SaundersCo., Philadelphia, USA, 1998ColinR	
8. Townsend, Michael Begon and John L. Harper, 'Essentials of Ecology', Third Edition, Blackwell	
Publishing, 2008.	

PROFESSIONAL VALUES

L	Т	Р	J	С
0	0	2	0	0

Course Outcomes

After s	uccessful completion of this course, the students should be able to
CO1:	Develop the ethical values in both professional and personal life
CO2:	Develop ability to take decision to reinforce professional life
CO3:	Rational in professional skills required for diverse society
CO4:	Excel in ingenious attitude to congregate professional life
CO5:	Research into the professional stand
CO6:	Spruce an Individual with decorum to achieve professional life

Pre-requisite

- 1. U18VEP1501 / PERSONALVALUES
- 2. U18VEP2502 / INTERPERSONALVALUES
- 3. U187VEP3503 / FAMILYVALUES

CO/PO Mapping

	(S/M/W indicates strength of correlation)							S-S	trong, N	M-Medi	ium, W	-Weak		
COa		Programme Outcomes(POs)												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1								S						
CO2				Μ										
CO3			S											
CO4												S		
CO5								Μ						
CO6										М				

DIRECT	INDIRECT			
1. Group Activity / Individual performance and assignment	1. Mini project on values / Goodwill I	Recognition		
2. Assessment on Value work sheet /Test				
VALUES THROUGH PRACTICAL ACTIVITIES:		30 Hours		
1. Professional skills With Values: Positive Attitud	e, Adaptability, Responsibility,			
Hone sty and Integrity, Self Esteem, & Self Confid	Hone sty and Integrity, Self Esteem, & Self Confidence			
2. Building Innovative work cultures: Creative thinking, Critical thinking, Conflict				
Resolution, Problem Solving, & Decision making				

- **3. Professional Work Ethics:** Types of Ethics, Etiquette, personality Grooming, Emotional quotient, Human Dignity, Safety & Role of Professional in Social Responsibility
- **4. Engineering Ethics:** Engineering Council of India Objectives Code of Ethics Social responsibility -Professional Quality Ethical issues Effects Strategy Corruption, Consequences, Cures
- **5.** Case studies in engineering ethics: Discussion of case studies relating to Public safety, health, welfare, Quality of product, Improper conduct by management ,Product responsibility, Intellectual property

Theory:0	Tutorial:0	Practical:30	Project:0	Total: 30hours			
REFERENCE	S:						
1. LEARNING	TO DO SOURCE	BOOK 3 - UNESCO	-UNEVOC -				
PDF <u>www.u</u>	nevoc.unesco.org/fil	eadmin/user_upload/pu	ubs/LearningToDo.p	<u>odf</u>			
2. DECLARAT	TION OF PROFES	SIONAL VALUES A	AND ETHICAL				
STANDAR	DS <u>www.garda.ie/D</u>	ocuments/User/declarat	tionvalues.pdf				
3. KARMA YOGA - SWAMI VIVEKANANDAwww.vivekananda.net/PDFBooks/KarmaYoga.pdf							
4. PROFESSIONAL ETHICS IN ENGINEERING - Sasurie College of							
Engineering www.sasurieengg.com//GE2025%20Professional%20Ethics%20in%20Engineering							
5. ENGINEERING ETHICS CASE STUDY;							
Challenger	www.ucc.ie/en/proce	esseng/staff/academic/e	ebyrne//PE1006Pp	tNotesLect7.pdf			

SEMESTER V

INDUSTRIAL ELECTRONICS AND DRIVES

Т	Р	J	С
0	2	0	4

L

3

U18MCI5201

Course Outcomes

After successful completion of this course, the students should be able to				
CO1: Relate the basic semiconductor physics to the properties of real power semiconductor.	K2			
CO2: Describe the concept of operation of AC-DC converters.	K2			
CO3: Identify the operating the single phase and three phase inverter circuits	K3			
CO4: Describe the various PWM techniques.	K2			
CO5: Identify DC equipment with changing DC voltage and choppers for simple electrical application	К3			
CO6: Describe the speed control method in DC to DC converter	K2			

Pre-requisite

U17MCI3202- Electrical Machines

	CO/PO Mapping													
	(5	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak												
Cos		Programme Outcomes(Pos)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO1	S				М					М			S	
CO2	S												М	
CO3	S				М								М	
CO4	S	S	S										W	
CO5		М	S		М						М		S	

Direct	Indirect				
 Continuous Assessment Test I,II Assignment: Group Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc. (as applicable) End Semester Examination 	1. Course end survey				
POWER SEMICONDUCTOR DEVICES		9 Hours			
Thyristors – Volt-Ampere Characteristics – Switching Characteristics-Power MOSFET – Volt- AmpereCharacteristics–SwitchingCharacteristics-PowerIGBT–Volt-AmpereCharacteristics					

- Switching Characteristics		
AC to DC CONVERTERS		9 Hours
Diode Rectifiers - Single phase B	ridge – R, RL – Thyristor Converter	- Single phase bridge – RL
- Three phase fully controlled con	verter -R-RL Load.	
INVERTERS		9 Hours
Single-phase VSI – Half-bridge –	Centre tapped inverter - Full bridge	inverter -Three-phase VSI -
	n motor by voltage source inverter.	-
PWM TECHNIQUES		9 Hours
PWM Inverter – fundamental con-	cepts of PWM – naturally sampled F	PWM - PWM analysis by
duty cycle variation		
DC- DC CONVERTER		9 Hours
DC Chopper - Step Down Conver	ter – Step Up Converter -Buck Boos	st Converter – Introduction -
Fly Back converter-speed control		
Theory:45Hrs	Practical:30Hrs	Total Hours: 75
REFERENCES:		
1. Bimbhra P S, "Power Electroni	cs" Tata McGraw Hill, 2012	
	cs – Circuits Devices and Applicatio	n", 4 th Edition, Prentice
Hall International, New Delhi,		, , , , , , , , , , , , , , , , , , ,
3. Dubey G K., Doradia S R., Jos	hi A. and Singh, R.M., "Thyristorise	ed Power Controllers", 2 nd
Edition, Wiley Eastern Limited		
4. Joseph Vithayathil, "Power Ele	ectronics – Principle and Application	ns", Tata McGraw-Hill Inc,
New Delhi, 2010.		
5. Bimal K Bose "Modern power	electronics and AC Drives" Prentice	e Hall International, New
Delhi, 2001.		
6. D. Grahame Holmes, Thomas A	A. Lipo "Pulse Width Modulation fo	r Power Converters:
Principles and Practice", John	Wiley & Sons, 2003.	
LIST OF EXPERIMENTS:		
1. Voltage-Current characteris		
2. Voltage-Current characteris	otion of ICDT/MOSEET	
3. AC-DC uncontrolled conve		
4. AC-DC converter for half w	erter wave controlled using phase control	
4. AC-DC converter for half v 5. Speed control of PMDC me	erter wave controlled using phase control otor using three phase fully controlle	
4. AC-DC converter for half v5. Speed control of PMDC mo6. DC Voltage control using I	erter wave controlled using phase control otor using three phase fully controlle	
 4. AC-DC converter for half v 5. Speed control of PMDC mo 6. DC Voltage control using I 7. Buck – boost converters 	erter wave controlled using phase control otor using three phase fully controlle DC – DC Converter	
 4. AC-DC converter for half v 5. Speed control of PMDC mo 6. DC Voltage control using I 7. Buck – boost converters 8. Single phase IGBT based P 	erter wave controlled using phase control otor using three phase fully controlle DC – DC Converter PWM inverter	ed converter
 4. AC-DC converter for half v 5. Speed control of PMDC mo 6. DC Voltage control using I 7. Buck – boost converters 8. Single phase IGBT based P 	erter wave controlled using phase control otor using three phase fully controlle DC – DC Converter PWM inverter we induction motor using AC to AC v	ed converter

MANUFACTURING TECHNOLOGY

L	Т	Р	J	С
2	0	2	0	3

Course Outcomes

After s	After successful completion of this course, the students should be able to					
CO1:	Select and justify appropriate casting methods.	K2				
CO2:	Summarize various bulk deformation processes and the explain the working machineries.	K2				
CO3:	Describe the working principles of machines and various machining processes.	K2				
CO4:	Choose a suitable metal joining process for a given application.	K2				
CO5:	Perform various lathe and drilling operation for a given drawing.	K2				
CO6:	Perform machining operation in special purpose machine.	K2				
D	• • ,					

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Μ					Μ							W	Μ
CO2	Μ												W	М
CO3	Μ												W	М
CO4	Μ					Μ							W	М
CO5	М								М	М			W	М
CO6	М								М	М			W	М

Course Assessment methods.					
DIRECT	INDIRECT				
1. Internal test I					
2. Internal test II					
3. End semester Examination	1.Course end survey				
4. Assignment					
FOUNDRY TECHNOLOGY 7 Hou					
Pattern and Core making – Melting furnaces: Cupola and	I Induction furnaces – Special casting	g processes –			
Shell, Investment, Die casting – Defects in casting.					
FORMING PROCESSES 7 Hou					
Hot and Cold Working - Rolling - Introduction - Rolling Mills - Rolling Operations - Forging-					
Introduction-ForgingOperations-Dropforging-Extrusion	nandDrawing-ExtrusionPractice-Hot	,			

Cold, Impact and Hydrostatic extrusion. Drawing Process – Defects and Residual Stress Equipment.	es – Drawing
CONVENTIONAL MACHINING PROCESS	8 Hours
Lathes and Lathe Operations, Drilling and Drilling Machines, Reaming and Reamers, Tapp	ing and Taps
- Tool nomenclature, cutting speed, feed. Milling, Shaping and Grinding Machines and ope	rations.
PRINCIPLES & APPLICATIONS OF JOINING PROCESSES	8 Hours
Gas welding, Basic Arc Welding Processes, Thermit Welding, Ultrasonic Welding, Friction	Welding,
Resistance Welding and Explosive Welding. Principles and applications of Brazing and Solo	dering.
Theory: 30 Hours Practical: 30 Hours Total Hours: 60	
•	
REFERENCES:	
1. KalpakjianS., "Manufacturing Engineering and Technology",8 th edition, Pearson educ 2020.	ation India,
2. Hajra Choudhury S K. and Hajra Choudhury A K., "Elements of Workshop Technolo	gy", Volume I
and II, Media Promoters and Publishers Private Limited, Mumbai, 2008.	
3. Paul Degarma E, Black J T. and Ronald A Kosher, "Materials and Processes in Manu	facturing", 8th
edition, Hall of India, 2008.	
4. Sharma P C., "A Textbook of Production Technology", S. Chand and Co., Ltd., 2009.	
LIST OF EXPERIMENTS	
1. Study on measurement (Linear and angular measurements)	
2. Step Turning	
3. Taper Turning	
4. Thread cutting operation	
5. Knurling operation	
6. Boring operation	
7. Surface Milling operation	
8. Gear Cutting operation	
9. Grinding operation (surface, cylindrical and centerless)	

9. Grinding operation (surface, cylindrical and centerless)10. Shaping operation(Dove tail and slotting operation)

PROGRAMMABLE LOGIC CONTROLLERS

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After s	After successful completion of this course, the students should be able to					
CO1:	Outline the importance of PLC, DCS, SCADA in industrial automation	K2				
CO2:	Describe the architecture of PLCs with the analogy of relay logic components	K2				
CO3:	Develop ladder logic program for applications	K3				
CO4:	Integrate PLCs with electro-mechanical systems	K3				
CO5:	Classify the communication protocols	K2				
CO6:	Design SCADA system for industrial applications	K3				

Pre-requisite

Nil

CO/PO Mapping

	(S/M/W indicates strength of correlation)								trong, I	M-Med	ium, W	-Weak		
COs		Programme Outcomes(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	М													
CO3	М	М		М	S					S			S	Μ
CO4	М	М	М		S								М	
CO5	М												М	
CO6	М	М	М	М	S					S			S	S

DIDECT	INDIDECT				
DIRECT	INDIRECT				
1. Continuous Assessment Test I,II					
2. Assignment: Group Presentation, Project report,					
Poster preparation, Prototype or Product	1.Course end survey				
Demonstration etc. (as applicable)					
3. End Semester Examination					
INTRODUCTION		6 Hours			
Role of automation in industries, Benefits of automation -	-Introduction to automation tools: Low cost	automation,			
PLC, DCS, SCADA - Automation strategy evolution.					
PLC HARDWARE MODULES AND PROGI	RAMMING	6 Hours			
CPU - processor function - processor operating modes -	PLC system memory and application memory	ory – input			
modules - output modules - module selection - PLC inte	rnal operation and signal processing – input	and output			
processing.		-			
PROGRAMMING OF PLC SYSTEM					
Introduction to IEC 61131 - System functions – sequence control – ladder logic – programming sequences –					
limitation of ladder programming - logic instruction sets - standard PLC functions - special function relays - data					
handling instructions – arithmetic instructions – data manipulation – program subroutines – programming					
examples.		-			

INDUSTRIAL COMMUNICATION PROTOCOLS

Definition of protocol, Introduction to Open System Interconnection (OSI) model, Communication standard (RS232, RS485), Modbus (ASCII & RTU), Introduction to third party interface, concept of OPC (Object linking and embedding for Process Control), Foundation Fieldbus (H1&HSC). Comparison of Foundation Fieldbus, Modbus, Device net, Profibus, Industrial Ethernet.

SCADA SYSTEMS

Concept of SCADA systems, Programming techniques for: Creation of pages, Sequencing of pages, creating graphics & animation, Dynamos programming with variables, Trending, Historical data storage & Reporting, Alarm management, reporting of events and parameters, Comparison of different SCADA packages, Interfacing PLC and SCADA using communication links, Development stages involved for PLC based automation systems, Application Development using SCADA system.

Theory:45 HoursPractical:30HoursTotal Hours: 75

REFERENCES:

- 1. John W Webb and Ronald A Reis, "Programmable logic controllers: Principles and Applications", 5th Edition, Prentice Hall India, 2002.
- 2. Michael P Lukas, "Distributed Control systems", Van Nostrand Rein fold Company, 1995.
- 3. Frank D Petruzella, "Programmable Logic Controllers", 5thedition, McGraw-Hill Companies, March 2019.
- 4. Ian G Warnock, "Programmable Controllers Operation and Application", Prentice Hall International, UK, 1992.
- 5. Krishna kant, "Computer Based Industrial Control", 2nd revised edition, Prentice Hall of India, 2011.

LIST OF EXPERIMENTS

- 1. Construct a circuit to control a simple process using Relay and Timer module.
- 2. Design a T-junction traffic light controller using PLC
- 3. Design a PLC Program for automating bottle filling systems
- 4. Develop a PLC system to control a simple conveyor system
- 5. Study of industrial process automation and communication network architecture
- 6. Develop an HMI design for a simple pump tank system.
- 7. Develop a simple SCADA application using Dynamos.
- 8. Develop a SCADA panel to control a PLC based system.
- 9. Design a PLC ladder logic program to control the Speed of a motor
- 10. Design a PLC ladder logic program to control the Position of a servomotor.

11 Hours

U18MCT5004 CONTROL ENGINEERING 3	L	NTROL ENCINEEDING	Т	Р	J	C
	3	NIKOL ENGINEEKING	0	3		

Course Outcomes

After successful completion of this course, the students should be able to					
C01	Know the significance to control engineering and the basic construction of control systems.	K2			
CO2	Develop mathematical equations for model mechanical, electrical systems and can able to compute transfer function using block diagram and signal flow graph methods	K3			
CO3	Analyze the 1st and 2nd order systems in time domain for various test signals and Calculate steady state errors and derive generalized error series in the time domain analysis	К3			
CO4	Analyze the 1st and 2nd order systems in frequency domain using Bode and Polar plots	K3			
	Calculate the stability of the system using Routh Hurwitz, Nyquist and Root Locus techniques.	K3			
	Explain about PID control and tuning, time delay responses and also discuss sequence control in process industry	K2			

Pre-requisite

U18MAT3101 Partial differential Equations and Transforms

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
		Programme Outcomes(POs)												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	S												М	
CO3	S		М										М	
CO4	S			М										
CO5			М	М										
CO6	S				М									

Direct	Indirect
1. Continuous Assessment Test I,II	
2. Assignment: Group Presentation, Project report,	1.Course end survey
Poster preparation, Prototype or Product	5
Demonstration etc. (as applicable)	
3. End Semester Examination	

INTRODUCTION	12Hours
Open loop and closed loop systems - Examples - Elements of closed	loop systems - Transfer function
of elements - Modeling of physical systems - Mechanical systems - T	ranslational and Rotational
systems - Electrical networks - Block diagram - Signal flow graph - I	Mason's gain formula. Transfer
function - Transfer function of DC servomotor, AC servomotor.	
TIME DOMAIN ANALYSIS	12Hours
Standard Test signals - Time response of second order system - Time	
criteria - Types of systems - Steady state error constants - Generalize	d error series.
FREQUENCY RESPONSE OF SYSTEMS	12Hours
Frequency domain specifications - correlation between time and freq	lency response for second order
systems-Bode plots- Polar Plot -Assessment of stability - Gain Margi	n and phase Margin Assessment
- Lead, lag and Lead lag compensation using Bode Plot. Tutorials: I	Bode plot and polar plot using
MATLAB.	
STABILITY OF CONTROL SYSTEMS	12Hours
Characteristic equation - Routh Hurwitz criterion of stability - Nyqui	st stability - Nyquist stability
Characteristic equation - Routh Hurwitz criterion of stability - Nyqui criterion-Assessmentofrelativestability–GainandPhaseMargin.RootL	ocusconcept-RootLocus
Characteristic equation - Routh Hurwitz criterion of stability - Nyqui criterion-Assessmentofrelativestability–GainandPhaseMargin.RootLoprocedure - Root Locus construction - Root contours- Tutorials : Stab	ocusconcept-RootLocus
Characteristic equation - Routh Hurwitz criterion of stability - Nyqui criterion-Assessmentofrelativestability–GainandPhaseMargin.RootLo procedure - Root Locus construction - Root contours- Tutorials : Stab systems using MATLAB	ocusconcept-RootLocus bility analysis of higher order
Characteristic equation - Routh Hurwitz criterion of stability - Nyqui criterion-Assessmentofrelativestability–GainandPhaseMargin.RootLoprocedure - Root Locus construction - Root contours- Tutorials : Stab	ocusconcept-RootLocus
Characteristic equation - Routh Hurwitz criterion of stability - Nyqui criterion-Assessmentofrelativestability–GainandPhaseMargin.RootLo procedure - Root Locus construction - Root contours- Tutorials : Stab systems using MATLAB	bousconcept-RootLocus bility analysis of higher order 12Hours
Characteristic equation - Routh Hurwitz criterion of stability - Nyqui criterion-Assessmentofrelativestability–GainandPhaseMargin.RootLe procedure - Root Locus construction - Root contours- Tutorials : Stal systems using MATLAB AUTOMATIC CONTROL	bousconcept-RootLocus bility analysis of higher order 12Hours ng - Feed forward Control
Characteristic equation - Routh Hurwitz criterion of stability - Nyqui criterion-Assessmentofrelativestability–GainandPhaseMargin.RootLo procedure - Root Locus construction - Root contours- Tutorials : Stal systems using MATLAB AUTOMATIC CONTROL Introduction to Automatic Control -P-I-D Control - PID Control Tun	bousconcept-RootLocus bility analysis of higher order 12Hours ng - Feed forward Control
Characteristic equation - Routh Hurwitz criterion of stability - Nyqui criterion-Assessmentofrelativestability–GainandPhaseMargin.RootLoprocedure - Root Locus construction - Root contours- Tutorials : Stab systems using MATLAB AUTOMATIC CONTROL Introduction to Automatic Control -P-I-D Control - PID Control Tun Ratio Control - Time Delay Systems and Inverse Response Systems	beusconcept-RootLocus bility analysis of higher order 12Hours ng - Feed forward Control
Characteristic equation - Routh Hurwitz criterion of stability - Nyqui criterion-Assessmentofrelativestability–GainandPhaseMargin.RootLoprocedure - Root Locus construction - Root contours- Tutorials : Stal systems using MATLAB AUTOMATIC CONTROL Introduction to Automatic Control -P-I-D Control - PID Control Tun Ratio Control - Time Delay Systems and Inverse Response Systems Theory:60 Hrs Total Hours: 60 REFERENCES: 1. Nagrath I J. and Gopal M., "Control Systems Engineering", 5 th edi	bousconcept-RootLocus bility analysis of higher order 12Hours ng - Feed forward Control using MATLAB tool.
Characteristic equation - Routh Hurwitz criterion of stability - Nyqui criterion-Assessmentofrelativestability–GainandPhaseMargin.RootLoprocedure - Root Locus construction - Root contours- Tutorials : Stal systems using MATLAB AUTOMATIC CONTROL Introduction to Automatic Control -P-I-D Control - PID Control Tun Ratio Control - Time Delay Systems and Inverse Response Systems Theory:60 Hrs Total Hours: 60 REFERENCES: 1. Nagrath I J. and Gopal M., "Control Systems Engineering", 5 th edi Delhi, 2009.	bousconcept-RootLocus bility analysis of higher order 12Hours ng - Feed forward Control using MATLAB tool.
Characteristic equation - Routh Hurwitz criterion of stability - Nyqui criterion-Assessmentofrelativestability–GainandPhaseMargin.RootLe procedure - Root Locus construction - Root contours- Tutorials : Stal systems using MATLAB AUTOMATIC CONTROL Introduction to Automatic Control -P-I-D Control - PID Control Tun Ratio Control - Time Delay Systems and Inverse Response Systems of Theory:60 Hrs Total Hours: 60 REFERENCES: 1. Nagrath I J. and Gopal M., "Control Systems Engineering", 5 th edi Delhi, 2009. 2. Katsuhiko Ogata, "Modern Control Engineering", 5 th edition, Pren	bousconcept-RootLocus bility analysis of higher order 12Hours ng - Feed forward Control using MATLAB tool. tion, Prentice Hall of India, New tice Hall India, 2011.
Characteristic equation - Routh Hurwitz criterion of stability - Nyqui criterion-Assessmentofrelativestability–GainandPhaseMargin.RootLoprocedure - Root Locus construction - Root contours- Tutorials : Stal systems using MATLAB AUTOMATIC CONTROL Introduction to Automatic Control -P-I-D Control - PID Control Tun Ratio Control - Time Delay Systems and Inverse Response Systems Theory:60 Hrs Total Hours: 60 REFERENCES: 1. Nagrath I J. and Gopal M., "Control Systems Engineering", 5 th edi	bousconcept-RootLocus bility analysis of higher order 12Hours ng - Feed forward Control using MATLAB tool. tion, Prentice Hall of India, New tice Hall India, 2011. h, Pearson India, 2014.

DESIGN OF MACHINE ELEMENTS

L	Т	Р	J	С	
3	1	0	0	4	

Course Outcomes

COIR	Recognize the design process and the factors influencing it and design the	K3
CO2	Apply the basic concepts of design to Estimate the life of the components	K3
$\begin{array}{c} \mathbf{CO3} \begin{bmatrix} \mathbf{L} \\ \mathbf{t} \end{bmatrix} \\ \mathbf{t} \end{bmatrix}$	Design the circular shafts based on strength and rigidity, keys and couplings for power ransmitting elements	K3
CO4 A	Apply the basics of power transmission to select the belts	K3
CO5 [Design the welded joints, threaded joints and springs subjected to static and	K3
CO6 S	Select the rolling contact bearings for static and cyclic loads	K3

Pre-requisite

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
]	Program	nme O	utcome	es(POs))				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S		М		М								М	W
CO2	S				М								М	
CO3	S												М	
CO4	М												W	
CO5	S												М	
CO6	М												W	
Course	Assess	sment	metho								dine of			

	Direct	Indirect
1.	Continuous Assessment Test I,II	
2.	Assignment: Group Presentation, Project	
	report, Poster preparation, Prototype or	1.Course end survey
	Product Demonstration etc. (as applicable)	2
3.	End Semester Examination	

DESIGN PROCESS AND DESIGN FOR STATIC LOAD	9 Hours								
Machine Design – Design Process – Factors influencing design – Calculation of stresse	es for various								
load combinations - theories of failure – Factor of safety – Design of curved beams – Crane hook									
and 'C' frame – Design of levers									
DESIGN OF FLUCTUATING LOAD	8 Hours								
Stress concentration – causes & remedies – fluctuating stresses – fatigue failures – S-N	curve –								
endurance limit – notch sensitivity – endurance strength modifying factors – design	for finite and								
infinite life - cumulative damage in fatigue failure - Soderberg, Gerber, Goodm	nan, Modified								
Goodman diagrams – Fatigue design of components under combined stresses									
DESIGN OF POWER TRANSMITTING ELEMENTS	8 Hours								
Shaft design on the basis of strength, torsional rigidity and lateral rigidity and A.S.M.E Design of keys and splines – Design of flange coupling and flexible bushed pin couplin Selection of Flat belts, V-belts and ribbed belts.	ng – Belt drives:								
DESIGN OF JOINTS AND SPRINGS	10 Hours								
for static loads – Axially loaded unsymmetrical welded joints, Eccentric load in the pla theory of bonded joints Design of springs Types – applications and materials for springs – Stress and deflection equation compressionsprings–Styleofends–Designofhelicalcompressionandtensionsprings–Sprir and parallel–Introduction to Concentric helical springs, Helical torsion Spring, Multi- leaf springs – Surge in springs ROLLING CONTACT AND SLIDING CONTACT BEARINGS	s for helical ngsin series 10 Hours								
Types of rolling contact Bearings – Static and dynamic load carrying capacities, Stribe									
Equivalent bearing load – Load-life relationship – Selection of rolling contact bearing	gs – Design for								
cyclic loads and speed – mounting of bearings – Types of failure in rolling contact bear	rings – causes								
and remedies.									
Theory:45 Hrs Total Hours	s:45								
DEFEDENCES.									
REFERENCES:									
1. Bhandari V B., "Design of Machine Elements", 5th edition, Tata McGraw Hill Publi Ltd., 2020.	ication Co.								
2. Shigley J E. and Mischke C R., "Mechanical Engineering Design", 11th edition, Mc International, 2020.									
3. Prabhu T J, "Fundamentals of Machine Design", Bharat Institute of Science and Tec 2010.	hnology,								
4. Alfred Hall, Alfred Holowenko, Herman Laughlin and Somani S, "Machine design" McGraw Hill, 2007.	, Tata								

	ENGINEERING CLINIC - V	L	Τ	Р	J	C
U18INI5600	ENGINEERING CLINIC - V	0	0	4	2	3

Course objectives

- To help the students look into the functioning of simple to complex devices and systems •
- To enable the students to design and build simple systems on their own •
- To help experiment with innovative ideas in design and teamwork •
- To create an engaging and challenging environment in the engineering lab

Course Outcomes

After successful completion of this course, the students should be able to

CO1: Identify a practical problem and find a solution

CO2: Understand the project management techniques

CO3: Demonstrate their technical report writing and presentation skills

Pre-requisite

Nil

CO/PO Mapping

(S/M/W indicates strength of correlation)										trong, N	M-Medi	ium, W	-Weak		
C	Os		Programme Outcomes(POs)												
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	01	S	S	S	S	S	Μ	W		S			S	S	М
CO	D2											S		S	М
C	03										S			S	Μ

Course Assessment methods:

DIRECT	INDIRECT						
1. Project reviews 50%							
2. Workbook report10%	1. Course Exit Survey						
3. Demonstration & Viva-voce 40%							
Content:							

(

The course will offer the students with an opportunity to gain a basic understanding of computer controlled electronic devices and apply the concepts to design and build simple to complex devices. As a practical project based embedded course, the students will be taught the concepts using a variety of reference material available in the public domain. While the course will start with formal instruction on hardware, programming and applications, the major portion of the course will provide the students with ample opportunity to be innovative in designing and building a range of products from toys to robots and flying machines.

In the fifth semester, students will focus primarily on design project combining concepts learnt in Engineering clinics I and II

GUIDELINES:

- 1. Practical based learning carrying credits.
- 2. Multi-disciplinary/ Multi-focus group of 5-6 students.
- 3. Groups can select to work on a specific tasks, or projects related to real worldproblems.
- 4. Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group aswell as individual students.
- 5. The students have to display their model in the 'Engineering Clinics Expo' at the end ofsemester.
- 6. The progress of the course is evaluated based on reviews and final demonstration ofprototype.

Total Hours: 90

U18VEP5505	SOCIAL VALUES	L	Τ	Р	J	С
	(Mandatory)	0	0	2	0	0
Course Outcomes						

Course Outcomes

After s	After successful completion of this course, the students should be able to					
CO1:	Understand the transformation from self to society					
CO2:	Acquire knowledge about disparity among Human Beings					
CO3:	Realize the new ethics in creating a more sustainable Society					
CO4:	Develop skills to manage challenges in social issues					
CO5:	Acquire the skills for Management of Social work & Holistic Society					
CO6:	Validate the social liabilities at dissimilar situations					

Pre-requisite

- 1. U17VEP1501 / PERSONALVALUES
- 2. U17VEP2502 / INTERPERSONALVALUES
- 3. U17VEP3503 / FAMILY VALUES
- 4. U17VEP4504 / PROFESSIONALVALUES

	CO/PO Mapping													
	(S/M/W indicates strengthofcorrelation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						S								
CO2							S							
CO3								М						
CO4											S			
CO5												S		
CO6									М					

	DIRECT	INDIRECT
1.	Group Activity / Individual performance and	1. Mini project on values / Goodwill
	assignment	Recognition
2.	Assessment on Value work sheet /Test	_

VALUES THROUGH PRACTICAL ACTIVITIES:

- **1.** Self and Society: Relation between self and society Different forms of society Elements of Social structures Realization of Duties and Responsibilities of Individual in theSociety
- 2. Social Values: Tolerance Responsibility Sacrifice Sympathy Service peace- nonviolence right conduct- Unity forgive dedication –Honest
- **3.** Social issues: Disparity among Human beings- Poverty-Sanitation -corruption- un employmentsuperstition – religious intolerance & castes –terrorism.
- **4. Emerging Ethics for Sustainable Society:** Unison of Men in Society Positive Social Ethics Cause and Effect Ensuring an Equitable Society- Effect of Social Media in society development of Education and Science in the Society
- **5. SocialWelfare**:SocialwelfareOrganization-ProgrammebyGovernmentandNGO's-Benefits of Social Service - Balancing the Family and Social Life – Development of Holistic Society

Workshop mode

REFERENCES

- 1. SOCIAL PROBLEMS IN INDIA ForumIAS.com PDF discuss.forumias.com/uploads/Fileupload/.../711b18f321d406be9c79980b179932.pd...
- 2. INVESTING IN CULTURAL DIVERSITY AND INTERCULTURALDIALOGUE: UNESCO ... www.un.org/en/events/culturaldiversityday/pdf/Investing_in_cultural_diversity.pdf
- 3. INDIAN SOCIETY AND SOCIAL CHANGE University of Calicut www.universityofcalicut.info/SDE/BA_sociology_indian_society.pdf
- 4. CULTURE, SOCIETY AND THE MEDIA E- class www.eclass.uoa.gr/.../MEDIA164/.../%5BTony_Bennett, James_Curran, Michael_G
- 5. SOCIAL WELFARE ADMINISTRATION IGNOU<u>www.ignou.ac.in/upload/Bswe-003%20Block-2-</u> <u>UNIT-6-small%20size.pdf</u>

SEMESTER VI

Course Outcomes

After s	After successful completion of this course, the students should be able to				
CO1:	Describe the fundamentals of Computer Aided Design.	K2			
CO2:	Describe the basic and constructional features of CNC machines.	K2			
CO3:	Develop a CNC part programming for the basic turning and milling operation.	K3			
CO4:	Explain the importance of group technology and computer aided process plan.	K2			
CO5:	Generate CNC part program for a given components.	K3			
CO6:	Draft, model and assemble a given dimensional engineering components.	K3			

Pre-requisite

1. U17MCT2001 – Manufacturing Technology

CO/PO Mapping

	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COa		Programme Outcomes(POs)												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S									W				
CO2	М												W	
CO3	М	М	М		М								М	
CO4	М		W											
CO5	М				S									
CO6	S				S					М			S	

DIRECT	INDIRECT						
1. Internal Test I							
2. Internal Test II 1.Course end survey							
3. End semester Examination							
4. Assignment							
FUNDAMENTALS OF COMPUTER GRAPHICS9 Hours							
- CAD System Architecture- Computer Graphics - C	Product Cycle- Design Process- Sequential And Concurrent Engineering- Computer Aided Design – CAD System Architecture- Computer Graphics – Co-Ordinate Systems- 2D And 3D						
Transformations- Homogeneous Coordinates – Line	Drawing -Clipping- Viewing Transform	nation					
INTRODUCTION TO CNC	INTRODUCTION TO CNC 8 Hours						
History - Classification, Introduction to NC machine - Introduction to Computer Numerical Control,							
Features of CNC Machines - Different types of CNC	Features of CNC Machines - Different types of CNC machines - Advantages and disadvantages of CNC						
machines DNC and Adaptive control - Maintenance	features of CNC Machines.						

COMPONENTS OF CNC MACHINES AND TOOLING	10 Hours
Description of CNC components: Structure, Drive Mechanism, gearbox, Main drive, feed	drive, Spindle
Motors, Axesmotors-Spindlebearing-Slideways-Recirculatingballscrews-Backlashmeasure	
compensation, linear motion guide ways - Tool magazines, ATC, APC, Chip conveye	ors - Types of
measuring systems in CNC machines –Magnetic Sensors for Spindle	
Orientation. Qualified and pre-set tooling – Principles of location – Principles of clamping –	- Work holding
devices. Retrofitting of Conventional Machine Tools.	
CNC PART PROGRAMMING AND MAINTENANCE	11 Hours
Part Program Terminology- G and M Codes – Types of interpolation Methods of CNC par	
programming–Manual part programming: Fixed cycle, canned cycle–Computer Assisted p	
programming – APT language – CNC part programming using CAD/CAM-Introduction to	
Automated Part Programming. Factors influencing selection of CNC Machines - Practical	aspects of
introducing CNC machines in industries. Group Technology and CAPP	7 Hours
Introduction, part families, part classification and coding systems: OPITZ, PFA, Benefits of technology. Approaches to Process Planning, Different CAPB system, application and here	0 1
technology. Approaches to Process Planning, Different CAPP system, application and ben Manufacturing System(FMS) – Components – Layout.	ents. Flexible
Theory:45 Hrs Practicals:30 Hrs Total Hours	
	5: 75
REFERENCES	
1. Radhakrishnan P., "Computer Numerical Control Machines", New Central Book Ag	
2. Groover M P., "Automation, Production Systems and Computer Integrated Manufac	cturing",
Prentice Hall, 2007.	-
3. YoremKoren, "Computer Control of Manufacturing Systems", Pitman, London, 201	
4. Chris McMahon and Jimmie Browne "CAD/CAM Principles", "Practice and Manuf	acturing
management "Second Edition, Pearson Education, 1999	C
5. Ibrahim Zeid, Sivasubramanian R, "CAD/CAM: Theory & Practice" 2 nd edition, Mo	CGraw Hill,
Singapore, 2009. LIST OF EXPERIMENTS:	
1.Drafting	
2. Modeling	
3. Assembly	
4. Part Programming - CNC Turning Centre	
i) Step and Taper Turning	
ii) Thread cutting	
iii) Drilling	
5. Part Programming - CNC Milling Centre	
i) Contouring	
ii) Drilling	
iii) Pocketing	

ROBOTICS ENGINEERING

L	Т	Р	J	С
3	0	2	0	4

Course Outcomes

After s	After successful completion of this course, the students should be able to					
CO1:	Explain the robotic terminologies for various configurations	K2				
CO2:	Select an appropriate gripper for a given application and use a gripper for pick and place application	K3				
CO3:	Calculate the forward kinematics, inverse kinematics and Jacobian for a serial robot	K3				
CO4:	Apply Lagrangian and Newton-Euler methods to analyze dynamic characteristics of a robot	K3				
CO5:	Describe various robot motion planning algorithm and robot interfaces	K2				
CO6:	Explain and practice various programming techniques used in industrial robots	K3				

Pre-requisite Nil

	CO/PO Mapping													
(S/M/W indicates strength of correlation) S – Strong, M – Medium, W – Weak														
Cos	Programme Outcomes (PO's)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	S			W					М	Μ			М	М
CO3	S	М	Μ		М				М	Μ			М	М
CO4	S	Μ	Μ										М	М
CO5	Μ													W
CO6					S				М	М			Μ	М
Cours	se Asse	ssmen	t meth	nods:							- 11			

	Direct	Indirect								
1.	Continuous Assessment Test I,II									
2.	2. Assignment: Group Presentation, Project report, 1.Course end survey									
	Poster preparation, Prototype or Product									
	Demonstration etc. (as applicable)									
3.	End Semester Examination									
IN	INTRODUCTION 6 Hours									
Brief History, Types of robots, Overview of robot subsystems, resolution, repeatability and										
	accuracy, Degrees of freedom of robots, Robot configurations and concept of workspace,									
		•	•							
ac		•	•							
ac M	curacy, Degrees of freedom of robots, Robot co	•	•							
ac M K	curacy, Degrees of freedom of robots, Robot co echanisms and transmission - Applications.	onfigurations and concept of works	pace, 9 Hours							
ac M K In	curacy, Degrees of freedom of robots, Robot co echanisms and transmission - Applications. INEMATICS OF ROBOTS	onfigurations and concept of works cous transformation matrices – Forw	pace, 9 Hours ward and							
ac	curacy, Degrees of freedom of robots, Robot co	•	•							

DYNAMICS OF ROBOTS

11 Hours

ROBOT MOTION PLANNING AND ROBOT INTERFACES	5 Hours
Robot Motion Planning: Cartesian Space vs Configuration space, Introduction	
algorithms. Robot interfaces: Low level interfaces, IO digital signals, Fieldbus	es – Data protocols
and connections	
END EFFECTORS	4 Hours
End effectors and Different types of grippers, vacuum and other methods of gr	ripping - Grippers
force analysis-Gripper Design-Simple problems	
ROBOT PROGRAMMING	10 Hours
	nput, lead throug
programming, teach pendant programming; Off-line programming languages -	
Introduction to Robotic operating System (ROS) – Visualization using RViz, Moving	, the robot in Gazebo,
Manipulation with MoveIt, - Simulation.	
Theory:45 Hrs. Practical:30Hrs	Total Hours:75
REFERENCES:	
1. Saeed B Niku, 'Introduction to Robotics', 2 nd edition, Prentice Hall of In	
2. Mikell P Groover, "Industrial Robots - Technology, Programming and A	Applications",
McGraw Hill, New York, 2008.	
3. Norberto Pires, 'Industrial Robots programming: Building Applications	for the Factories of
the Future', 1 st edition, Springer,2012	
4. Nagrath and Mittal, "Robotics and Control", Tata McGraw-Hill,2003.	
5. Spong and Vidhya sagar, "Robot Dynamics and Control", John Wiley and	
6. Fu K S, Gonzalez R C, Lee C S G, "Robotics, control, sensing, Vision as	nd Intelligence",
McGraw Hill International,1987	
7. Steve LaValle, "Planning Algorithms", Cambridge Univ. Press, New Yo	
8. Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor, Wolfram Kavraki and Sebastian Thurn, "Principles of Robot Motion: Theory, Alg Implementations", Prentice Hall of India,2005.	
9. Anil Mahtani, Luis Sanchez, Enrique Fernandez, Aaron Martinez, 'Effective R	obotics Programming
with ROS', 3 rd Edition, Packt, 2016.	6 6
LIST OF EXPERIMENT:	
1. Study of different type of robotics simulation software	
2. Modeling forward and inverse kinematics for robotic arm using Mathematic	cal Software
3. Offline programming of an Industrial robot using a Robotics simulation So	ftware
4. Setup and program a robot with object profile tracking using a Robotics sin	nulation Software
5. Develop a trajectory planning for a robot using a simulation software.	
6. Setup and program an Industrial Robot with a pneumatic vacuum gripper for and place operation	or a simple pick
7. Writing and verifying a Program for point to point operations	
8. Robot programming and simulation for Shape identification	
9. Setup and Program a robot to avoid obstacles	
5. Setup and Frogram a robot to avoid obstacles	

U18MCI6203

MICROCONTROLLER AND EMBEDDED SYSTEMS

L	Т	Р	J	С
3	0	2	0	3

٦

Course Outcomes

After	After successful completion of this course, the students should be able to										
CO1:	Compare various cores of embedded systems	K2									
CO2:	Brief the architecture, instruction set and interrupts of microcontroller	K3									
CO3:	Describe the features of ARM Cortex-M4 controller	K2									
CO4:	Interface the peripherals of ARM Cortex-M4 controller	K3									
CO5:	Develop embedded systems through hardware and software integration	K3									
CO6:	Explain the concepts of real time operating systems	K2									

Pre-requisite

1. U17MCT4103- Digital Electronics and Microprocessor

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
	Programme Outcomes(Pos)													
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	Μ		М										М	М
CO2	Μ		S	Μ	S								S	S
CO3	W		Μ										М	М
CO4	Μ		S		S								S	S
CO5	W	Μ	S		S								S	S
CO6	S	S	Μ	М									М	М
Course			math	. da.										

Direct	Indirect								
1. Continuous Assessment Test I,II									
2. Assignment; Group Presentation, Project report,									
Poster preparation, Prototype or Product 1. Course end survey									
Demonstration etc. (as applicable)	2								
3. End Semester Examination									
INTRODUCTION TO EMBEDDED SYSTEM	AS 3 Hours								
Embedded system overview and applications, feature	es - Brief introduction to embedded								
microcontroller cores: CISC, RISC, ARM and DSP.									
THE MICROCONTROLLER ARCHITECTURE9 Hours									
Introduction to 8051 Microcontroller: Architecture, Pin configuration, Memory organization, Input									
/Output Ports, Counter and Timers, Serial communic	ation and Interrupts, Instruction set,								

Addressing modes, Simple programming	
INTRODUCTION TO TIVA ARM CORTEX M4	9 Hours
Key Features – Functional Block Diagram - Pin Configuration –I/O pin multiplexin	
up/down registers, GPIO control, Memory Mapped Peripherals, programming Sy	stem registers,
Watchdog Timer, need of low power for embedded systems, System Clock	s and control,
Hibernation Module on Tiva, Active vs Standby current consumption. Introductio	n to Interrupts,
Interrupt vector table, interrupt programming.	
PERIPHERALS OF TIVA ARM CORTEX	9 Hours
Timer, Basic Timer, Real Time Clock (RTC), Timing generation and measurements	
interfacing and data acquisition: ADC, Analog Comparators, DMA, Motion Contro	l Peripherals:
PWM Module & Quadrature Encoder Interface (QEI)	1
HARDWARE/SOFTWARE INTEGRATION:	6 Hours
Host and Target Machines. Getting Embedded Software into Target System: Progra	ummers,
Display, Keyboard, Relay, Stepper and DC Motor Interfacing	
REAL TIME OPERATING SYSTEMS	9 Hours
Survey of Software Architectures, Tasks and Task States, Tasks and Data, Semapho	
Data, Message Queues, Mailboxes and Pipes, Timer functions, Events, Memory Ma	U
Interrupt Routines in RTOS Environment. Study of embedded product design with	real time
concepts using RTOS.	
Theory: 45 Hrs Practicals: 30 Hrs. Total Hours: 75	
REFERENCES:	1
1. Kenneth J Ayala and Dhananjay V Gadre, "The 8051 Microcontroller & Emb	addad Systems
using Assembly and C" Cengage Learning (India edition), 2010	Sedded Systems
 Jonathan W Valvano, "Introduction to Arm Cortex -M Microcontrollers", 20 	12
3. Steve Furber, "ARM System-on-Chip Architecture", Pearson Education, 200	
 Jever Furser, "An Embedded Software Primer", Pearson Education Asia, 1 	
5. Rajkamal," Embedded Systems: Architecture, Programming and Design", Ta	
Hill, New Delhi, 2017	
6. Mazidi M A, Mazidi J G. and McKinlay R D., "The 8051 Microcontroller &	Embedded
7. systems", 2 nd Edition, Pearson, 2011	
8. Shibu K V., "Introduction to Embedded Systems" McGraw Hill, 2016.	
9. Andrew N Sloss, Dominic Symes and Chris Wright, "ARM system develope	r's guide",
Elsevier, 2010.	e ,
List of Experiments	
8051 Assembly language program & interfacing	
1. Basic programming using 8051 ALP (addition, subtraction, multiplication, asce	nding,
descending etc.)	
2. 8051 peripheral programming (ADC, counter, timer, interrupts etc.)	
3. Motor control using 8051(DC motor and stepper motor)	
4. Build and test circuits with switches, LEDs, resistors, potentiometers, and liquid	d crystal display
5. Synchronizing hardware and software input/output with switches, lights, sound, and liquid crystal displays	, sensors, motor
6. Implementation of combination lock with Capsense	

6. Implementation of combination lock with Capsense

- 7. Motor control using PWM
- 8. Development of hypothetical Switch Protocol using GPIO and timer using ARM7 and PSoC using embedded C.
- 9. Utilization of capacitive sensing (CapSense) module of PSoC board for simple applications

< Signature of BOS chairman, MCE

U18VEP6506

NATIONALVALUES

(Mandatory)

L	Т	Р	J	С
0	0	2	0	0

Course Outcomes

After s	After successful completion of this course, the students should be able to									
CO1:	Acquire knowledge on the Essence of Indian Knowledge Tradition									
CO2:	Know the great Indian personalities and follow their trail									
CO3:	Understand the specialty of democracy									
CO4:	Disseminate our Nation and its values to propagate peace									
CO5:	Contribute with their energy and effort for a prosperous India									
CO6:	Propagate the youth and the contribution for development of our Nation									
Drea mar										

Pre-requisite

- 1. U17VEP1501 / PERSONALVALUES
- 2. U17VEP2502 / INTERPERSONALVALUES
- 3. U17VEP3503 / FAMILY VALUES
- 4. U17VEP4504 / PROFESSIONALVALUES
- 5. U17VEP5505 / SOCIALVALUES

CO/PO Mapping

	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
Cos		Programme Outcomes(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						S								
CO2									М					
CO3							М							
CO4								S						
CO5											S			
CO6												М		

DIRECT	INDIRECT
 Group Activity / Individual performance and assignment Assessment on Value work sheet / Test 	1. Mini project on values / Goodwill Recognition

< Signature of BOS chairman, MCE

VALUES THROUGH PRACTICAL ACTIVITIES:

- 1. Essence of Indian Knowledge Tradition:
- Basic structure of Indian Knowledge System Modern Science and Indian Knowledge System Yoga and Holistic Health care Case studies Philosophical Tradition Indian Linguistic Tradition Indian Artistic Tradition.
- 2. Great Indian Leaders : Ancient rulers Freedom fighters Social reformers -Religious and Spiritual leaders Noble laureates -Scientists –Statesman.
- 3. Largest Democracy : Socialist -Secular Democratic and Republic special features of Indian constitution Three pillar of Indian democracy Fundamental rights Duties of a citizen centre state relationship.
- India's Contribution to World peace : Nonaligned Nation Principle of Pancha Sheela

 Mutual respect, non-aggression, non-interference, Equality and cooperation Role of India in UNO
 Yoga India's gift to theworld.
- 5. Emerging India : World's largest young work force Stable Economic development Labor market & Achievement in space technology Value based Social structure. Emerging economic superpower.

Workshop mode

REFERENCES

- 1. KNOWLEDGE TRADITIONS AND PRACTICES OF INDIA, CBSEPublication cbseacademic.nic.in/web_material/Circulars/2012/68_KTPI/Module_6_2.pdf
- CULTURAL HERITAGE OF INDIA SCERT Kerala www.scert.kerala.gov.in/images/2014/HSC.../35 Gandhian Studies unit-01.pdf
- 3. LEARNING TO DO: VALUES FOR LEARNING AND WORKING TOGETHER –UNESCO www.unesdoc.unesco.org/images/0014/001480/148021e.pdf \backslash
- 4. INDIA AFTER GANDHI.pdf Ramachandra Guha University of Warwick www2.warwick.ac.uk/fac/arts/history/students/modules/hi297/.../week1.pdf
- 5. INDIA'S CONTRIBUTION TO THE REST OF THE WORLD You Sigma <u>www.yousigma.com/interesting</u> facts/indiasgifttotheworld.pdf
- 6. INDIA AS AN EMERGING POWER International Studies Association web.isanet.org/Web/Conferences/.../11353cac-9e9b-434f-a25b-a2b51dc4af78.pdf

U18INT6000

CONSTITUTION OF INDIA

(Mandatory course)

L	Т	Р	J	С
2	0	0	0	0

Course Outcomes

After successful completion of this course, the students should be able to

CO1: Gain Knowledge about the Constitutional Law of India

CO2: Understand the Fundamental Rights and Duties of a citizen

CO3: Apply the concept of Federal structure of Indian Government

CO4: Analyze the Amendments and Emergency provisions in the Constitution

CO5: Develop a holistic approach in their life as a Citizen of India

Pre-requisite

Nil

CO/PO Mapping

(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs	Programme Outcomes(POs)													
003	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						М			W			S		
CO2						S		S				Μ		
CO3									Μ	S		W		
CO4								W	Μ			Μ		
CO5						М		Μ				S		
CO6														

DIRECT	INDIRECT						
1. Group Activity / Quiz/ Debate / Case studies	1. Surveys						
2. Class test /Assignment							
THEORY COMPONENT CONTENTS							
MODULE.1: INTRODUCTION TO INDIAN	4 Hours						
Meaning of the constitution law and constitutional	Meaning of the constitution law and constitutionalism - Historical perspective of the						
Constitution - Salient features and characteristics of the Constitution of India							
MODULE.2: FUNDAMENTAL RIGHTS	8 Hours						
Scheme of the fundamental rights - Right to Equality - Fundamental Right under Article 19 -							
Scope of the Right to Life and Liberty - Fundamental Duties and its legal status - Directive							
Principles of State Policy – Its importance and imp	plementation						
MODULE.3: FEDERAL STRUCTURE	8 Hours						
Federal structure and distribution of legislative and fin	ancial powers between the Unio	n and the States -					
Parliamentary Form of Government in India - The constitutional powers and status of the President of							
India							
MODULE.4: AMENDMENT TO CONSTITUTION							
Amendment of the Constitutional Powers and Pro	cedure - The historical perspe	ectives of the					
constitutional amendments in India							

MODULE.5	: EMERGENC	Y PROVISIONS		4 Hours			
National Emergency, President Rule, Financial Emergency Local Self Government –							
Constitutiona	l Scheme in Ind	ia					
Theory:30	Tutorial:0	Practical:0	Project:0	Total:30			
Hours							
REFEREN	CES:						
1. Constit	1. Constitution of India - Ministry of Law & Justice – PDF format						
awmin.	nic.in/coi/coiaso	on29july08.pdf					
2. Introduction to the Constitution of India by Durgadas Basu							
3. The Constitution of India – Google free material -							
www.constitution.org/cons/india/const.html							
4. Parliament of India – PDF formatdownload.nos.org/srsec317newE/317EL11.pdf							
5. The Role of the President of India – By Prof. Balkrishna							
6. Local Government in India – E Book - Pradeep Sachdeva							
https://books.google.com/books//Local_Government_in_In							

SEMESTER VII

ENGINEERING ECONOMICS AND FINANCIAL MANAGEMENT

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

Course	outcomes						
After s	After successful completion of this course, the students should be able to						
CO1:	Evaluate the economic theories, Cost concepts and pricing policies						
CO2:	Analyze the market structures and integration concepts	K2					
CO3:	Apply the concepts of national income and understand the functions of banks and concepts of globalization	K2					
CO4:	Apply the concepts of financial management for project appraisal and working capital management	K2					
CO5:	Understand accounting systems	K2					
CO6:	Analyze financial statements using ratio analysis	K2					

Pre-requisite

NIL

CO/PO Mapping

	(S/M/W indicates strength of correlation) S – Strong, M – Medium, W – Weak													
	Programme Outcomes (PO's)													
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		М				М					М		W	
CO2											М		W	
CO3				М		М					М			
CO4											S			
CO5						М					S			
CO6			М		М						S			

Course Assessment methods:

Direct	Indirect
1. Internal Test I	
2. Internal Test II	
3. Assignments	1.Course End Survey
4. End Semester Exam	

Course Content:

ECONOMICS, COST AND PRICING CONCEPTS

9 Hours

Economic theories – Demand analysis – Determinants of demand – Demand forecasting – Supply – Actual Cost and opportunity Cost – Incremental Cost and sunk Cost – Fixed and variable Cost – MarginalCosting–TotalCost–ElementsofCost–Costcurves–Breakevenpointandbreakevenchart

– Limitations of break even chart – Interpretation of break even chart – Contribution – P/V-ratio, profitvolume ratio or relationship – Price fixation – Pricing policies – Pricing methods.

CONCEPTS ON FIRMS AND MANUFACTURING PRACTICES					
Firm – Industry – Market – Market structure – Diversification – Vertical integration – Me – Horizontal integration.	rger				
NATIONAL INCOME, MONEY AND BANKING, ECONOMIC ENVIRONMENT	9 Hours				
National income concepts – GNP – NNP – Methods of measuring national income – Infla – Deflation – Kinds of money – Value of money – Functions of bank – Types of bank – E liberalization – Privatization – Globalization					
CONCEPTS OF FINANCIAL MANAGEMENT	9 Hours				
Financial management – Scope – Objectives – Time value of money – Methods of apprais profitability – Sources of finance – Working capital and management of working capital	sing project				
ACCOUNTING SYSTEM, STATEMENT AND FINANCIAL ANALYSIS	9 Hours				
Accounting system - Systems of book-keeping - Journal - Ledger - Trail balance - Finar	ncial				
statements – Ratio analysis – Types of ratios – Significance – Limitations.					
Theory:45hours Tutorials:0hour Total Hours: 45					
REFERENCES:					
1. Prasanna Chandra, "Financial Management (Theory & Practice),"TMH					
2. Weston & Brigham, "Essentials of Managerial Finance"					
3. Pandey, I. M., "Financial Management"					
4. James C. Van Horne. Fundamentals of Financial Management					
5. Bhaskar S. "Engineering Economics and Financial Accounting", (2003) Anuradha A Chennai	gencies,				
6. James C. Van Horne Financial Management & Policy					
7. Management Accounting & Financial Management					
8. M. Y. Khan & P. K. Jain Management Accounting Principles & Practice -P. Saravan					
 Ramachandra Aryasri. A., and Ramana Murthy V.V., "Engineering Economics & Fin Accounting"-Tata McGraw Hill, New Delhi, 2006. 	nancial				
10. Varshney R.L., and Maheshwari K.L.," Managerial Economics" – Sultan Chand & S Delhi, 2001	Sons, New				
11. Samvelson and Nordhaus," Economics"-Tata McGraw Hill, New Delhi, 2002					

	_			0
	-			P
		> are		
Signa	ture of B	OS chair	man	MCE
Signa	ture of B	US chair	rman, i	Ņ

T10N/CT7001
U18MCT7001

MOBILE ROBOTICS

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After successful completion of this course, the students should be able to					
CO1: Explain different types of mobile robot locomotion	K2				
CO2: Apply mobile robot kinematics and constraints	K2				
CO3: Choose sensors for the perception of mobile robots.	K2				
CO4: Implement robot localization techniques	K3				
CO5: Explain planning and navigation in robotics	K2				
CO6: Apply obstacle avoidance techniques in mobile robots					

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		·				Prog	ramme	Outco	mes(P	Ōs)				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													Μ
CO2	S	М	M		М									S
CO3	S				М								Μ	S
CO4	S				М									S
CO5	S												Μ	S
CO6	S				М								Μ	S
Cours	se Ass	essmei	nt met	hods:							•	•		
			Diı	rect							Indirec	t		
			sessme											
	0		roup P					1. Co	ourse e	nd surve	ey			
-		-	repara		• •									
			nstrațio		(as app	licable	2)							
			Examin	ation									0.1	T
LOC			1	1 '		1	. 1		T	6.1		1		Iours
	Introduction to Robotics – key issues in robot locomotion – Types of Locomotion -legged robots –													
wheeled mobile robots – aerial mobile robots – stability - robot maneuverability – controllability.														
MOBILE ROBOT KINEMATICS								Iours						
	Forward and inverse kinematics, holonomic and nonholonomic constraints, kinematic models of													
	simple car and legged robots, simulation of mobile robots							Τ						
ROBOT PERCEPTION						9 F	Iours							

Proprioceptive/Exteroceptive and passive/active sensors, performance measures of sensors, sensors for mobile robots like global positioning system (GPS), Doppler effect-based sensors, vision-based sensors, uncertainty in sensing, filtering.

MOBILE ROBOT LOCALIZATION	9 Hours				
Introduction to localization – challenges in localization – localization and navigation –	pelief				
representation – map representation – probabilistic map-based localization – Markov lo	calization,				
Kalman localization					
PATH PLANNING AND NAVIGATION	9 Hours				
Introduction to planning and navigation – planning and reacting – path planning algorith	nms based				
on A-star, Dijkstra, Voronoi diagrams – obstacle avoidance techniques					
Theory:45Hours Tota	l Hours: 45				
REFERENCES:					
1. Roland Seigwart, IllahReza Nourbakhsh, and Davide Scaramuzza, "Introduction to a	utonomous				
mobile robots", Second Edition, MIT Press, 2011.					
2. Howie Choset, Kevin M. Lynch , Seth Hutchinson , George A. Kantor , Wolfram Bu	rgard ,				
Lydia E. Kavraki, Sebastian Thrun, ``Principles of Robot Motion: Theory, Algorithms, and Control of Control					
Implementations", A Bradford Book, 2005.					
3. Gregory Dudek and Michael Jenkin, "Computational Principles of Mobile Robotics"	, Second				
Edition, Cambridge University Press, 2010.					
4. Peter Corke, Robotics, Vision and Control: Fundamental Algorithms in MATLAB, Springer					
Tracts in Advanced Robotics, 2011.					
5. S. M. LaValle, "Planning Algorithms", Cambridge University Press, 2006.					

5. -Signature of BOS chairman, MCE

IMAGE PROCESSING AND

U18MCT7002

COMPUTER VISION

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After successful completion of this course, the students should be able to	
CO1: Summarize the fundamentals of digital image processing	K2
CO2: Apply image enhancement techniques in spatial and frequency domain.	K3
CO3: Apply image segmentation and clustering techniques	K3
CO4: Describe 3D vision concepts	K2
CO5: Choose appropriate techniques for different applications	K4

Pre-requisite Nil

CO/PO Mapping														
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
G Q						Progr	amme	Outco	mes(P	Os)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	W											S	
CO2	М	М	S		S								W	М
CO3	М	М	S		S								W	М
CO4	М	М		S									М	S
CO5	S	S	S	S	S								S	S
Course								•	•					

Direct	Indirect				
1. Internal Test I					
2. Internal Test II	1.Course end survey				
3. End semester Examination					
4. Assignment					
FUNDAMENTALS OF IMAGE PROCESSING 7 Hou					
Introduction to Image processing and Computer Vision; Digital image representation; elements of					

5 Signature of BOS chairman, MCE

digital image processing systems; Structure of the human eye; a simple image mode	el; brightness
adaptation and discrimination; Electromagnetic Spectrum. Image Sensing and Acqu	isition. Some
Basic Relationships Between Pixels.	
IMAGE ENHANCEMENT	10 Hours
Basic gray level transformations-histogram equalization- Arithmetic/logic Operation	ns-Basics of
spatial filtering-comparison between smoothing and sharpening spatial filters. 2D F	ourier
transform -Smoothing & sharpening Frequency domain filters (Ideal, Butterworth, G	Gaussian)
SEGMENTATION AND CLUSTERING	10 Hours
Segmentation - Thresholding, Edge detection and Region growing, watershed, Bina	ary Morphology
and grey morphology operations. boundary descriptors-chain codes -Fourier descri	
descriptors, moments Clustering: K-means Clustering. Pattern recognition.	
3D VISION GEOMETRY	9 Hours
3D vision tasks, Basics of projective geometry, A single perspective camera, Scene	e reconstruction
from multiple views, Two cameras stereopsis, Three cameras and trifocal tensor, 31	
vision, 2D view based representations of a 3D scene	
APPLICATIONS	9 Hours
Industrial automation and quality inspection, Object detection; Gesture Recognition	n; Finger print
recognition, Vision for robot control-Selection of camera based on applications.	
Theory:45Hrs Total H	lours:45
REFERENCES:	
1. Rafael C Gonzalez and Richard E Woods, "Digital Image Processing", 6 th Inc	dian Reprint,
Pearson Education Asia/Addison Wesley publishing company, 2017.	1
2. William K Pratt, "Digital Image Processing", 2 nd edition, Wiley-Inter Scie 1991.	nce Publication,
3. Milan Sonka, Vaclav Hlavac and Roger Boyle, "Image Processing, Analysis, a Vision", Brooks/Cole, Singapore,2008.	and Machine
4. Davies E. R., "Computer & Machine Vision", Academic Press, 2012.	
	1
5. Szeliski R., "Computer Vision: Algorithms and Applications", Springer, 201	1.
 Szeliski R., "Computer Vision: Algorithms and Applications", Springer, 201. Simon J. D. Prince, "Computer Vision: Models, Learning, and Inference", Ca 	
6. Simon J. D. Prince, "Computer Vision: Models, Learning, and Inference", Ca	mbridge

U18VEP7507

GLOBAL VALUES

(Common to all branches of Engineering and Technology)

L	Т	Р	J	С
1	1	0	1	1

Course Outcomes

CO1: Understand importance of ecology and its preservations

CO2: Understand the various global issues and their causes and solutions.

CO3: Approach any problem holistically as against giving a reductionist solution

CO4: Learn impact of globalization on various factors such as environment, local population

CO5: Learn to integrate and understand how an Individual peace impacts world peace

Pre-requisite

Nil

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes(POs) COs PSO1 PSO2 PO1 PO₂ PO3 PO6 PO8 P10 PO11 PO12 PO4 PO5 PO7 PO9 W CO1 Μ М М Μ Μ W Μ Μ CO2 Μ S S Μ W W CO3 W W М Μ Μ W Μ W W W Μ CO4 S Μ Μ CO5 W W W S

Direct	Indirect				
1. Individual Assignment					
2. Group Assignment					
3. Presentation	Course end survey				
4. SurpriseTest	Course end survey				
5. Practical Assessment					
6. End Semester Assessment					
Introduction to Global Values		1 Hours			
Introduction to Systems Thinking		1 Hours			
Ecology, ecological imbalances and its	solution	3 Hours			
Globalisation Vs Localisation – an eco	nomic and Spiritual Perspective	3 Hours			
Global Issues & Solutions		3Hours			
Advanced Contemplative Practices		4 Hours			
Total Hours: 15					
REFERENCES:					

1. Vethathiri's Maharishi's, "World peace" The World Community Service Centre,
Vethathiri Publications, 1957.
2. Fritz Schumacher, "Small is Beautiful", The Blond & Briggs, Published1973
3. Noam Chomsky, "Profit over People", Seven Stories Press, Published1999.
4. Vethathiri's Maharishi's, "Atomic Poison" The World Community Service Centre,
Vethathiri Publications, 1983.

5. -Signature of BOS chairman, MCE

U18MCP7701		L	Т	Р	J	С
	PROJECT PHASE I	0	0	0	6	3
Course Outcome						

After successful completion of this course, the students should be able to

CO1: Design, analyze, realize / simulate a physical system by using the technology they learnt during the program.

CO2: Integrate various systems into one Mechatronics product.

CO3: Work in a team with confined time duration.

CO4: Disseminate his work both in oral and written format.

Pre-requisite

Nil

CO/PO Mapping

	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes(POs)												
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S	S	S	S		М	М				S	S	S
CO2	S	S	S	S	S	Μ	Μ	Μ				S	S	S
CO3									S					
CO4										S	S			

Course Assessment methods:

Direct	Indirect
1. Interdisciplinary work	
2. Innovation	
3. Working model/ simulation result	1.Course end survey
4. Report with good referencing	
5. End Semester Viva Voice	

Students in the form of group, not exceeding 4 members in a group to carry out their main project. It should be a Mechatronics project. However, special considerations can be given for interdisciplinary measurement and computer based simulation projects. This exception should be recorded and approved by the department committee. Management related projects will not be allowed. The interdisciplinary projects will carry more weightage.

SEMESTER VIII

U18MCP8701	PROJECT PHASE II /	L	Т	Р	J	С
	INTERNSHIP	0	0	0	24	12

After successful completion of this course, the students should be able to

CO1: Design, analyze, realize / simulate a physical system by using the technology they learnt during the program.

CO2: Integrate various systems into one Mechatronics product.

CO3: Work in a team with confined time duration.

CO4: Disseminate his work both in oral and written format.

Pre-requisite

Nil

CO/PO Mapping

(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak

COs Programme Outcomes(POs)														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO1	S	S	S	S	S		Μ	М				S	S	S
CO2	S	S	S	S	S	М	М	М				S	S	S
CO3									S					
CO4										S	S			

Course Assessment methods:

Direct	Indirect
1. Inter disciplinary work	
2. Innovation	
3. Working model/ simulation result	1.Course end survey
4. Report with good referencing	
5. End Semester Viva Voice	

Students in the form of group, not exceeding 4 members in a group to carry out their main project. It should be a Mechatronics project. However, special considerations can be given for interdisciplinary measurement and computer-based simulation projects. This exception should be recorded and approved by the department committee. Management related project swill not be allowed. The interdisciplinary projects will carry more weightage.

PROGRAMME ELECTIVES

U18MCE0001

AUTOMOTIVE ELECTRONICS

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After successful completion of this course, the students should be able to							
CO1:	Explain the basics concepts of automobile engines	K2					
CO2:	Describe the components of Engine Control system	K2					
CO3:	State the working principle of automotive sensors.	K2					
CO4:	Describe the principle of vehicle network protocols	K3					
CO5:	Explain the working of various comfort system embedded in automobile	K2					
CO6:	Describe the working principle of automobile safety systems	K2					

Pre-requisite

U18MCI4202 - Sensors and Instrumentation

	CO/PO Mapping													
(S/M/	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
						Progr	amme	Outco	mes(P	Os)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S						М					W		
CO2	S					W	W	М					М	М
CO3	S	М											W	М
CO4	S	М	М	W		W		W					S	М
CO5	S		М		М	W	M					W		М
CO6	S		М		М	М	M	W				W	S	S
Cours	e Asse	essmer	nt met	hods:										

Direct	Indirect							
 Continuous Assessment Test I,II Assignment: Group Presentation, Project report, Poster preparation, Prototype or Product Demonstration etc. (as applicable) End Semester Examination 								
INTRODUCTION 9 Hours								
Automobile physical configuration - Evolution of electronics in automobiles - Operating principles								

of IC engine – Two stroke – Four stroke - Major engine components – Eng	•
arrangements –working of simple carburetor- Ignition system – definition of engine	e performance
	0.11
ENGINE CONTROL SYSTEM	9 Hours
Motivation For Electronic Engine Control - Electronic Engine Control System - Eng	
And Control - Electronic Fuel Control System- Engine Mapping- Effect of Air/Fue	-
Timing on Performance, Exhaust Gas Recirculation on Performance- Electronic Ig	0
Engine Control System - Engine Crank (Start) - Engine Warm-Up - Open-Loop Control	ol - Closed-
Loop Control - Hard Acceleration - Deceleration and Idle	0.77
AUTOMOTIVE SENSORS AND COCK PIT ELECTRONICS	9 Hour
Role of sensors and actuators in automotive control- construction and working princip	
flow (MAF) rate sensor - Exhaust gas oxygen sensor - Throttle plate angular pos	
Crankshaft angular position/RPM sensor - Coolant temperature - Intake air temper	
Manifold absolute pressure (MAP) sensor - Differential exhaust gas pressure sensor ·	- Vehicle spee
sensors- Introduction to Cockpit Electronics – Visual displays	T
VEHICLE NETWORKS	9 Hour
Vehicle Tracking System GPS, Vehicle networks CAN, CAN FD, LIN, FlexRay- I/O	Modules –
Features- Advantages- Protocol formats – on board diagnostics systems.	
COMFORT AND SAFETY SYSTEMS	9 Hour
Traction control system - Cruise control system- electronic control of automatic trans	
antilock braking system - electronic suspension system -airbag systems - centralized	
system – Navigation systems – climate control of cars- Maintenance and charging of l	patteries.
Theory: 45 Hrs Total Hours: 45	
REFERENCES:	
1. David Crolla, "Encyclopedia of Automotive Engineering", 6th edition, wiley, 20	015
2. Tom Denton, "Automobile Electrical and Electronics Systems", 2 nd edition Edw	
Publishers, 2017.	
3. William B Ribbens, "Understanding Automotive Electronics", 5 th edition, News	nes Publishing
2003	
4. Robert Bosch GmbH, "BOSCH Automotive Handbook", 9th edition, Bentley pu	blishers, 2014
5. Barry Hollembeak, "Automotive Electricity, Electronics and Computer Controls	
Delmar Publishers, 2001.	
	rt Publication
6. Warren M Farnell, "Fuel System and Emission controls", 1st edition Check Cha 2005.	
6. Warren M Farnell, "Fuel System and Emission controls", 1st edition Check Cha	

U18MCE0002

CONDITION MONITORING

Course Outcomes

After su	After successful completion of this course, the students should be able to						
CO1	Recognize the types of failures and maintenance strategies	K2					
CO2	Illustrate the fundamental principles of machinery vibration	K2					
CO3	Explain signal analysis, fundamentals of FFT and signal conditioning	K2					
CO4	Explain the vibration and noise based condition monitoring techniques	K3					
CO5	Explain the thermography and wear analysis for condition monitoring	K2					
CO6	Identify and explain the appropriate condition monitoring technique for a given application	K3					

Pre-requisite Nil

	CO/PO Mapping													
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs						Prog	ramme	Outco	mes(P	Os)				
	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	Μ													
CO3	S													
CO4		S											S	
CO5	S												S	
CO6	S	М	M										S	М
Course	Asses	sment	tmeth	ods:										<u>.</u>
Direct										Indire	ect			
1. C	ontinu	ious As	ssessm	ent T	est I,II									
2 Artice manual Course Description Desired														

2.	Assignment: Group Presentation, Project	
	report, Poster preparation, Prototype or	1.Course end survey
	Product Demonstration etc (as applicable)	
3.	End Semester Examination	

FAILURES AND PRINCIPLES OF MAINTENANCE	07 Hours								
System failure and component failure, Types of failure, Causes of failure	, Failure investigation								
principles, Human factors in failure incidents, Maintenance strategies: Preventive Maintenance,									
Predictive Maintenance, Bath Tub Curve, Failure Modes Effects and Crit	ticality Analysis								
FUNDAMENTALS OF MACHINERY VIBRATION	10 Hours								
Simple harmonic motion and vibration, Vibration and Spring Mass syst	em, Degrees of freedom,								
Free vibration and Natural frequency, Forced vibration and Vibration iso									
Freedom Motion, Forced Vibration Response, Base Excitation, For	ce Transmissibility and								
Vibration Isolation, Tuned Vibration Absorber, Unbalanced Response, Cl	naracteristics of Vibrating								
Systems, Vibration of Continuous Systems, Mode Shapes and Operation	al Deflection								
Shapes									
DIGITAL SIGNAL PROCESSING	10 Hours								
Classification of Signals, Signal Analysis, Frequency Domain Signal Analysis									
Fast Fourier Transform, Computer-Aided Data Acquisition, Signal Cond	6, 6								
Demodulation, Cepstrum Analysis, Illustrative examples: Representation	of signals in the								
frequency domain, Compressor Vibration and Engine Vibration									
VIBRATION AND NOISE MONITORING	06 Hours								
Principles of Vibration Monitoring, Misalignment Detection, Eccentry	icity Detection, Cracked								
Shaft, Bowed and Bent Shaft, Unbalanced Shaft, Looseness, Rub, Bearin	g Defects, Faults in Fluid								
Machines, Acoustical Terminology, NoiseSources, SoundFields, NoiseMe	asurements,								
Noise Source Identification									
THERMOGRAPHY	06 Hours								
Thermal Imaging Devices, Use of IR Camera, Industrial Application Condition Monitoring	s of Thermography in								
WEAR DEBRIS ANALYSIS	06 Hours								
Mechanisms of Wear, Detection of Wear Particles, Oil Sampling Technic	que, Oil Analysis, Limits								
of OilAnalysis									
Theory:45Hours Total	Hours:45								
REFERENCES:	REFERENCES:								
 Amiya R. Mohanty, "Machinery Condition Monitoring: Principles Press, 2015 	and Practices", CRC								
2. R.A. Collacott, "Mechanical Fault Diagnosis and Condition Monit	oring", Springer,2012.								
3. W.T.Becker, R.J.Shipley, "ASM Handbook: Volume 11: Failure Analysis and Prevention", ASM International, 2002.									
4. V.P. Singh, "Mechanical Vibrations", Dhanpat Rai & Co., 2014.									

MICRO ELECTROMECHANICAL

L	Т	Р	J	С
3	0	0	0	3

U18MCE0003

SYSTEMS

Course Outcomes	
After successful completion of this course, the students should be able to	0
CO1: Explain the evolution of micro and smart system.	K2
CO2: Illustrate about various sensors and actuating system.	K2
CO3: Classify the Micro machining techniques in MEMS.	K2
CO4: Evaluate a proper scaling method.	K2
CO5: Determine packaging techniques in MEMS and smart system.	K2
CO6: Discuss various applications of MEMS.	K2
CO5: Determine packaging techniques in MEMS and smart system.	K2

Pre-requisite

Nil

(S/M/	W ind	icates	strengt	h of co	orrelati		/PO M S-			edium,V	V-Weak			
COs						Prog	ramme	Outco	mes(P	Os)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	М													
CO3	S													
CO4		S											S	
CO5	S												S	
CO6	S	М	М										S	М

Course Assessment methods:	
Direct	Indirect
1. Continuous Assessment Test I, II	1. Course end survey
2. Assignment:Group Presentation,	
Project report, Poster preparation,	
Prototype or Product	
Demonstration etc (as applicable)	
3. End Semester Examination	

IN	TRODUCTION	9 Hours
Ove	erview - Microsystems and microelectronics - definition-MEMS materials-scaling	ng laws scaling in
	metry-scalinginrigidbodydynamics-scalinginelectrostaticforces-scalinginelectri	
in f	luid mechanics- scaling in heat transfer.	
MI	CRO SENSORS AND ACTUATORS	9 Hours
Wo	rking principle of Microsystems - micro actuation techniques - micro sensors-ty	pes-Micro
	ators – types – micro pump – micro motors – micro – valves – micro grippers -	
	celerometers	
FA	BRICATION PROCESS	9 Hours
Sub	ostrates-single crystal silicon wafer formation-Photolithography-Ion implantatio	n-Diffusion –
Oxi	idation-CVD-Physical vapor deposition-Deposition by epitaxy-etching process.	
MI	CRO SYSTEM MANUFACTURING	9 Hours
Bul	k Micro manufacturing- surface micro machining – LIGA – SLIGA - Micro sys	stem packaging-
	k Micro manufacturing- surface micro machining – LIGA – SLIGA - Micro systemials - die level-device level-system level-packaging techniques - die preparati	
mat	k Micro manufacturing- surface micro machining – LIGA – SLIGA - Micro systemials - die level-device level-system level-packaging techniques - die preparation ding -wire bonding - sealing.	
mat bon	terials - die level-device level-system level-packaging techniques - die preparati	
mat bon MI	terials - die level-device level-system level-packaging techniques - die preparati ading -wire bonding - sealing.	on -surface 9 Hours
mat bon MI Des	terials - die level-device level-system level-packaging techniques - die preparati ding -wire bonding - sealing. CRO SYSTEM DESIGN	on -surface 9 Hours
mat bon MI Des syst	terials - die level-device level-system level-packaging techniques - die preparati ading -wire bonding - sealing. CRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-appl	on -surface 9 Hours
mat bon MI Des syst The	terials - die level-device level-system level-packaging techniques - die preparati ding -wire bonding - sealing. CRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-appl tems in automotive industry, bio medical, aero space and telecommunications eory:45 Hours Total Hours:45	on -surface 9 Hours
mat bon MI Des syst The REFI	terials - die level-device level-system level-packaging techniques - die preparati ding -wire bonding - sealing. CRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-appl tems in automotive industry, bio medical, aero space and telecommunications eory:45 Hours Total Hours:45 ERENCES:	on -surface 9 Hours ications of micro
mat bon MI Des syst The	terials - die level-device level-system level-packaging techniques - die preparati ding -wire bonding - sealing. CRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-appl tems in automotive industry, bio medical, aero space and telecommunications eory:45 Hours ERENCES: Tai-Ran Hsu, "MEMS & Microsystems Design and Manufacture", Tata McC	on -surface 9 Hours ications of micro
mat bon MI Des syst The REFI 1.	terials - die level-device level-system level-packaging techniques - die preparati ding -wire bonding - sealing. CRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-appl tems in automotive industry, bio medical, aero space and telecommunications eory:45 Hours ERENCES: Tai-Ran Hsu, "MEMS & Microsystems Design and Manufacture", Tata McC Mohamed Gad-el-Hak, "The MEMS Hand book", CRC press, 2005.	on -surface 9 Hours ications of micro Graw-Hill, 2017.
mat bon MI Des syst The EFI 1. 2.	terials - die level-device level-system level-packaging techniques - die preparati ding -wire bonding - sealing. CRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-appl tems in automotive industry, bio medical, aero space and telecommunications eory:45 Hours Total Hours:45 ERENCES: Tai-Ran Hsu, "MEMS & Microsystems Design and Manufacture", Tata McC Mohamed Gad-el-Hak, "The MEMS Hand book", CRC press, 2005. Julian W Gardner, Vijay K Varadan, Osama O Awadel Karim, "Microsensor	on -surface 9 Hours ications of micro Graw-Hill, 2017.
mat bon MI Des syst The EFI 1. 2.	terials - die level-device level-system level-packaging techniques - die preparati ding -wire bonding - sealing. CRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-appl tems in automotive industry, bio medical, aero space and telecommunications eory:45 Hours Total Hours:45 ERENCES: Tai-Ran Hsu, "MEMS & Microsystems Design and Manufacture", Tata McC Mohamed Gad-el-Hak, "The MEMS Hand book", CRC press, 2005. Julian W Gardner, Vijay K Varadan, Osama O Awadel Karim, "Microsensor Smart Devices", John Wily and sons Ltd., 2001.	on -surface 9 Hours ications of micro Graw-Hill, 2017. s MEMS and
mat bon Des syst The EFI 1. 2. 3.	terials - die level-device level-system level-packaging techniques - die preparati ding -wire bonding - sealing. CRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-appl tems in automotive industry, bio medical, aero space and telecommunications cory:45 Hours Total Hours:45 ERENCES: Tai-Ran Hsu, "MEMS & Microsystems Design and Manufacture", Tata McC Mohamed Gad-el-Hak, "The MEMS Hand book", CRC press, 2005. Julian W Gardner, Vijay K Varadan, Osama O Awadel Karim, "Microsensor Smart Devices", John Wily and sons Ltd., 2001. Fatikow S,Rembold U, "Microsystem Technology and Micro robotics", Spring	on -surface 9 Hours ications of micro Graw-Hill, 2017. s MEMS and
mat bon Des syst The EFI 1. 2. 3.	terials - die level-device level-system level-packaging techniques - die preparati ding -wire bonding - sealing. CRO SYSTEM DESIGN sign considerations-process design-mask layout design- mechanical design-appl tems in automotive industry, bio medical, aero space and telecommunications eory:45 Hours Total Hours:45 ERENCES: Tai-Ran Hsu, "MEMS & Microsystems Design and Manufacture", Tata McC Mohamed Gad-el-Hak, "The MEMS Hand book", CRC press, 2005. Julian W Gardner, Vijay K Varadan, Osama O Awadel Karim, "Microsensor Smart Devices", John Wily and sons Ltd., 2001.	on -surface 9 Hours ications of micro Graw-Hill, 2017. rs MEMS and nger-Verlag

	0	
	Sul	7
Sig	nature of BOS chairman, MCE	

U18MCE0004

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After s	successful completion of this course, the students should be able to	
CO1	Express the basic concepts of Artificial Intelligence	K2
CO2	Demonstrate the usage of planning and decision making.	K3
CO3	Interpret the ideas of machine learning by supervised and unsupervised learning methods	K3
CO4	Apply Linear Regression and Logistic Regression machine learning methods.	K3
CO5	Summarize the concepts of Artificial Neural Networks	K2
CO6	Describe various Artificial Neural Networks methodology	K2

Pre-requisite

Data Warehousing and Data Mining

						(CO/PO	Mapp	oing					
		(S/]	M/W iı	ndicate	s streng	gth of c	orrelat	ion)	S-St	rong, N	1-Medi	um, W	-Weak	
						Progra	amme	Outcon	nes(PO	Os)				
COs	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S	М		S	S			S	Μ		Μ	М	М
CO2	S	Μ	Μ							Μ		Μ	W	М
CO3	S	S	Μ		Μ					Μ		Μ	W	М
CO4	S	S	Μ		Μ					Μ		Μ	W	М
CO5	S	S	М		S	S			S	Μ		Μ	S	М
CO6	S	S	М		S	S		W	S	М		М	S	S
Course	Asse	ssment	meth	ods:										

ourse Assessment methods:

Direct	Indirect	
1. Internal Test I		
2. Internal Test II		
3. Assignment	1.Course end survey	
4. Group Presentation		
5. End semester exam		
INTRODUCTION TO ARTIFICIAL INT	TELLIGENCE	9 Hours
Defining Artificial Intelligence, Intelligent Agents	s, Solving Problems by searching-Problem-s	olving agents-
Example problems – Searching for Solutions-Uninfe	ormed search strategies - Informed search st	rategies –
Heuristic functions		
KNOWLEDGE REPRESENTATION AN	ND PREDICATE LOGIC	10 Hours
Knowledge Representation and Mappings, Approach	hes to knowledge representation	

Representing simple facts in logic, Computable functions and predicates, Procedural vs Declarative knowledge,LogicProgramming,Forwardvsbackwardreasoning.ClassicalPlanning,Makingsimple Decisions

IDEA OF MACHINE LEARNING	9 Hours
Idea of Machine learning from data, Supervised Learning : Learning a Class from Exam	ples-Noise-
Learning Multiple Classes- Regression-Model Selection and Generalization, Unsupervi	sed learning-
Introduction, k-Means Algorithm, Optimization objective, Random Initialization, Choos	ing number
of clusters -Deep learning.	
LINEAR REGRESSION AND LOGISTIC REGRESSION	9 Hours
Linear Regression -Model representation for single variable, Single variable Cost Function, Mu	
function, Gradient Decent for Linear Regression, Multivariable model representation, Logisti	U
Classification, Hypothesis Representation, Decision Boundary, Cost function, Advanced Optimi	zation,
Classification (One vs All), Problem of Overfitting, Regularization	
APPLICATIONS	9 Hours
Applications of AI- Natural Language Processing – Machine Translation – Robot – Gaming. Int	
Artificial Neural Networks and Convolution Neural networks – Applications Use of Tensor flow	
Theory:45Total Hours:	45Hours
REFERENCES:	
1. Stuart Russell, Peter Norvig, "Artificial Intelligence – A Modern Approach", 3rd Edition, P	earson
Education / Prentice Hall of India,2015.	
3. Elaine Rich, Kevin Knight, Shivashankar.B.Nair, "Artificial Intelligence", Tata McGraw H Edition, 2009	Iill,Third
5. Nils J. Nilsson, "Artificial Intelligence: A new Synthesis", Harcourt Asia Pvt. Ltd., 2000.	
 George F. Luger, "Artificial Intelligence-Structures and Strategies for Complex ProblemSo Pearson Education / PHI,2008 	olving",
8. David L. Poole, Alan K. Mackworth, "Artificial Intelligence: Foundations of Computationa Cambridge University Press, 2010.	al Agents",
9. EthemAlpaydin, "Introduction to Machine Learning", Second Edition, MIT Press,2015	
10. Tom M. Mitchell, —Machine Learning, McGraw-Hill Education (India) Private Limited, 20)13
11. Stephen Marsland, —Machine Learning: An Algorithmic Perspective, CRC Press, 2009.	
12. Y. S. Abu-Mostafa, M. Magdon-Ismail, and HT. Lin, "Learning from Data", AML Book P 2012	Publishers,
13. K. P. Murphy, "Machine Learning: A probabilistic perspective", MIT Press, 2012.	
14. M. Mohri, A. Rostamizadeh, and A. Talwalkar, "Foundations of Machine Learning"	', MIT Press,
2012.	. ,

<		P	Ĩ
Signature of BOS	chairman	MCE	

U18MCE0005	DATABASE MANAGEMENT SYSTEMS	L	Т	Р	J	С
		3	0	0	0	3

After successful completion of this course, the students should be able to					
CO1	Understand the functional components of DBMS and Relational Model.	K2			
CO2	Devise queries using SQL to develop database application	K2			
CO3	Describe the database design approaches.	K2			
CO4	Understand data storage and retrieval techniques.	K2			
CO5	Explore concepts for transaction processing, concurrency control and NOSQL.	K2			
CO6	Illustrate the concepts of NOSQL	K2			

Pre-requisite

NIL														
		CO/PO Mapping												
		(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak												
C O						Progr	amme (Dutcome	s(POs)					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	Μ					S		Μ					Μ
CO2				Μ	S			Μ		Μ	S	Μ		Μ
CO3			М				М						Μ	
CO4			М				S							
CO5	S						S			Μ				
CO6	S	М	М							М			М	Μ

Course Assessment methods:						
Direct	Indirect					
1. Internal Test I						
2. Internal Test II 1.Course end survey						
3. Assignment: Group Presentation						
4. End semester exam						
INTRODUCTION TO DATABASE AND REI	9Hours					
Introduction: Database applications, Purpose, Accessing a						
Relational Databases: Relational model, Database schema	a, Keys, Formal Relational Query Language	es				
DATABASE APPLICATION DEVELOPMENT						
Guidelines for Database Design. SQL: Data definition, Ba	asic SQL query structure, Specifying integr	ity constraints in				
SQL, Set operations, Nested subqueries, Aggregation, Join expressions, Views. Functions, Procedures and Triggers.						
Accessing Databases from Programs using JDBC, Building Web Applications using PHP & MySQL. Case						
Study: Open Source Relational DBMS						
DATABASE DESIGN	9 Hours					

Database Design: E-R model, E-R diagram, Reduction to relational schema, E-R design issues, Relational Database Design: features of good design, Functional Dependency theory, decomposition using functional dependency, Normal forms. (Optional: multi-valued dependency and 4th normal form).

STORAGE AND INDEXING

7 Hours

Storage and File structure: File Organization, RAID. Indexing: Concepts, Clustered and Non-clustered Indices, B-tree and B+-tree. Basics of Hashing (Static, Dynamic).Overview of Query processing.

TRANSACTION MANAGEMENT

11 Hours

Transactions: Concept and purpose, ACID properties and their necessity, transactions in SQL .Transaction Schedules: Conflicts and Aborts, Serializability, Recoverability. Concurrency Control: lock-based protocols, 2- phase locking, Timestamp based protocols. Deadlock handling. Case Study: NoSQL: CAP Theorem and BASE Properties, Types of NoSQL Systems.

Theory: 45

Total Hours: 45Hours

REFERENCES:

- 1. Abraham Silberschatz, Henry Korth, and S. Sudarshan, "Database System Concepts", Sixth Edition, McGraw-Hill.2016.
- 2. R. Elmasri and S. Navathe, "Fundamentals of Database Systems", Sixth Edition, Pearson Education, 2016
- 3. Raghu Ramakrishnan, Johannes Gehrke, Database Management Systems, 3nd Edition, McGraw Hill, 2014.
- 4. Thomas M. Connolly and Carolyn E. Begg, "Database Systems A Practical Approach toDesign, Implementation and Management", Fifth edition, Pearson Education, 2014
- 5. C.J.Date, A.Kannan and S.Swamynathan, "An Introduction to Database Systems", Eighth Edition, Pearson Education, 2006.

	SOFT COMPUTING	L	Т	Р	J	С
U18MCE0006		3	0	0	0	3

After	After successful completion of this course, the students should be able to					
CO1	Identify and describe soft computing techniques and their roles in building intelligent	K2				
	machines					
CO2	Recognize the feasibility of applying a soft computing methodology for a particular problem	K2				
CO3	Identify and select a suitable classification/clustering algorithm to solve the problem	K2				
CO4	Apply evolutionary algorithms and Fuzzy logic to solve the problem	K2				
CO5	Discuss the soft computing systems by hybrid soft computing techniques	K2				
CO6	Describe the various optimization techniques used in soft computing	K2				

Pre-requisite

		CO/PO Mapping												
		(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak												
		Programme Outcomes(POs)												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
CO1	S	М	S										S	S
CO2	S	М											М	
CO3	S		S	S				S	S				М	S
CO4	S		S		S	М		S	S				М	S
CO5	S				S			S						
CO6	S	S						S					W	W
2			4 41											

Course Assessment methods:

Direct	Indirect
1. Internal Test I	
2. Internal Test II	1.Course end survey
3. Assignment: Group Presentation	
4. End semester exam	
INTRODUCTION TO FUZZY SETS AND FUZZ	Y LOGIC SYSTEMS 9 Hours

Fuzzy sets and Fuzzy logic systems- Classical Sets and Fuzzy Sets and Fuzzy relations- Operations on Classical sets, properties of classical sets, Fuzzy set operations, properties of fuzzy sets, cardinality, operations, and properties of fuzzy relations. Membership functions: Features of membership functions, standard forms and boundaries, different fuzzification methods Fuzzy toCrispconversions:LambdaCutsforfuzzysets,fuzzyRelations, Defuzzification methods.

9 Hours

FUZZY RULE BASED SYSTEMS

Classical predicate logic, Fuzzy Logic, Approximate reasoning and Fuzzy Implication- Linguistic Hedges, Fuzzy Rule based system – Aggregation of fuzzy Rules, Fuzzy Inference System- Mamdani Fuzzy Models – Sugeno Fuzzy Models. Applications of Fuzzy Logic: How Fuzzy Logic is applied in Home Appliances, General Fuzzy Logic controllers, Basic Medical Diagnostic systems and Weather forecasting

<	P
Signature of BOS ch	airman, MCE

Advent of Modern Neuroscience, Classical AI and Neural Networks, Biological Neurons and Artificial neural network; model of artificial neuron. Learning Methods: Hebbian, competitive, Boltzman etc., Neural Network models: Perceptron, Adaline and Madaline networks; single layer network; Back propagation and multi-layer networks. Competitive learning networks: Kohonen self-organizing networks, Hebbian learning; Hopfield Networks.

GENETIC ALGORITHMS

Simple GA, crossover and mutation, Multi-objective Genetic Algorithm (MOGA) Applications of Genetic Algorithm: genetic algorithms in search and optimization, GA based clustering Algorithm, Image processing and pattern Recognition.

HYBRID SOFT COMPUTING TECHNIQUES

Introduction - Neuro-Fuzzy Modelling-Applications of Neural Networks- Pattern Recognition and classification Genetic-Neuro Hybrid System, Genetic-Fuzzy Hybrid System, Fuzzy-Genetic Hybrid System, Simplified Fuzzy ARTMAP, Application of Soft Computing, CASE Study.

Other Soft Computing techniques: Simulated Annealing, Tabu search, Ant colony optimization (ACO), Particle Swarm Optimization (PSO).

Theory: 45Hrs Total Hours: 45 Hrs REFERENCES:

- 1. Samir Roy, Udit Chakroborthy, —Introduction to soft computing neuro-fuzzy and genetic algorithm^I, Person Education, 2013
- 2. Timothy J.Ross, —Fuzzy Logic with Engineering applications^{II}, Tata McGraw Hill New York, Third edition, 2016
- 3. DavidE.Goldberg,—GeneticAlgorithmsinSearchOptimizationandMachineLearning,PearsonEducation, 2007.

4. J.-S.R Jang., C.-T Sun., & E. Mizutani, —Neuro-Fuzzy and Soft Computing, A Computational Approach to Learning and Machine Intelligencel, Prentice-Hall of India Pvt. Ltd., 2005.

9 Hours

9 Hours

9 Hours

UNDER WATER ROBOTICS

L	Т	P	J	C
3	0	0	0	3

Course Outcomes

After	After successful completion of this course, the students should be able to						
CO1	Express the basic concepts of underwater vehicle and Manipulator Systems	K2					
CO2	Describe the rigid body kinematics of Autonomous Underwater vehicle and manipulators	K2					
CO3	Summarize the dynamics of Autonomous Underwater vehicle and manipulators.	K2					
CO4	Apply controllers for dynamic control of Autonomous Underwater vehicles.	K2					
CO5	Discuss the concepts of kinematic control of Underwater manipulator systems.	K2					
CO6	Describe various dynamic control theories of Underwater manipulator systems.	K2					

Pre-requisite

IN	IL	

CO/PO Mapping														
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
COs						Progr	amme	Outco	mes(P	Os)				
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S											W		
CO2	S	Μ												
CO3	S	М				М							Μ	S
CO4	S	W		W	М								S	S
CO5	S	М		W	М								W	W
CO6	S	М		W	М								М	М
Cours	Course Assessment methods:													
			Dir	ect						Ι	ndirect			

Direct	Indirect				
1. Internal Test I					
2. Internal Test II	1.Course end survey				
3. Assignment: Group Presentation					
4. End semester exam					
MODELLING OF UNDER WATER ROBOTS 9 Hours					
Introduction to Underwater Vehicles -Sensorial Sy	stems, Actuation, Localization,	Autonomous			
Underwater Vehicles (AUV) Control Fault Detect	ion/Tolerance for UUVs, Underv	water			
Vehicle Manipulator Systems (UVMS) Coordinate	ed Control, Future Perspectives.				
MODELLING OF UNDER WATER ROBOTS 10 Hours					
Rigid Body's Kinematics-Attitude Representation by Euler Angles, Attitude Representation by					
Quaternion, Attitude Error Representation, 6-DOF	s Kinematics, Rigid Body's Dyn	amics-Rigid			

Body's Dynamics in Matrix Form.	
DYNAMIC CONTROL OF AUVS	9 Hours
Earth Fixed Frame Based, Model Based Controller, Earth Fixed Frame Based, Non	model Based
Controller, Vehicle Fixed Frame-Based, Model-Based Controller, Mixed Earth/Ve	chicle
Fixed Frame Based Controller	
KINEMATIC CONTROL OF UVMS	8 Hours
Earth Fixed Frame Based, Model Based Controller, Earth Fixed Frame Based, Non	model Based
Controller, Vehicle Fixed Frame-Based, Model-Based Controller, Mixed Earth/Ve	hicle Fixed
Frame Based Controller.	
DYNAMIC CONTROL OF UVMS	9 Hours
Feed forward Decoupling Control, Feedback Linearization, Non-regressor-Based A	daptive Control,
Sliding Mode Control, Adaptive Control, Output Feedback Control.	
	Total Hours: 45
REFERENCES:	
1. Gianluca Antonelli, Underwater Robots: Motion and Force Control of Vehicl	le-Manipulator
Systems, Springer Berlin Heidelberg, Second Edition 2010	
2. C. Vasudevan, K. Ganesan, Underwater Robots, Springer, Third Edition, 20	15.
3. Frank Kirchner, Sirko Straube, Daniel Kühn, AI Technology for Underwater	r Robots, First
Edition 2019.	
4. Steven W. Moore, Harry Bohm, Vickie Jensen, Underwater Robotics: Science	e, Design &
Fabrication, Marine Advanced Technology Education (MATE) Center, 2010.	
5. Daniel R. Faust, Underwater Robots, The Rosen Publishing Group, Inc, First	t Edition, 2016.

5. -Signature of BOS chairman, MCE

INDUSTRIAL IOT

L	Т	P	J	С
3	0	0	0	3

9 Hours

Course Outcomes

After	After successful completion of this course, the students should be able to						
CO1	Explain the basic principles of smart manufacturing.	K2					
CO2	Illustrate the importance of IoT in smart manufacturing	K2					
CO3	Describe the functions of internet of things (IoT).	K2					
CO4	Explain the key elements of Industrial internet of things (IIoT).	K2					
CO5	Explain the functions of big data analytics.	K2					
CO6	Discuss various applications of Industrial IoT.	K2					

Pre-requisite

NIL

CO/PO Mapping

	(S/M/W	V indic	ates sti	rength	of corr	elation	i) S	S-Stron	g, M-M	edium, '	W-Wea	k	
COs		Programme Outcomes(POs)												
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S													
CO2	М													
CO3	S													
CO4		S											S	
CO5	S												S	
CO6	S	М	М										S	M

Course Assessment methods:

	Direct	Indirect					
1.	Continuous Assessment Test I,II						
2.	Assignment: Group Presentation, Project						
	report, Poster preparation, Prototype or	1. Course end survey					
	Product Demonstration etc (as applicable)						
3.	End Semester Examination						
IN	INTRODUCTION						

Globalization and Emerging Issues, The Fourth Revolution, LEAN Production Systems, Smart and Connected Business Perspective, Smart Factories

IoT COMPONENTS

Cyber Physical Systems and Next Generation Sensors, Collaborative Platform and Product Lifecycle Management, Augmented Reality and Virtual Reality, Artificial Intelligence, Big Data And Advanced Analysis, Cyber security inIndustry4.0,Basics of Industrial IoT, Industrial Sensing

& Actuation, Industrial Internet Systems.	
INDUSTRIAL IoT	9 Hours
Introduction, Industrial IoT: Business Model and Reference Architecture: IIoT-Bus	siness Models,
IIoT Reference Architecture, Industrial IoT- Layers: IIoT Sensing, IIoT Processing	, IIoT
Communication, IIoT Communication, IIoT Networking.	
INDUSTRIAL IOT: BIG DATA ANALYTICS	9 Hours
IIoT Analytics - Introduction, Machine Learning and Data Science, IoT Platforms,	Data
Management tool, Software-Defined Networking, Data Center Networks, Cloud Co	omputing
INDUSTRIAL IoT- APPLICATION	9 Hours
Power Plants, Oil, chemical and pharmaceutical industry, Inventory Management &	& Quality
Control, Plant Safety and Security (Including AR and VR safety applications), Faci	ility
Management.	-
Theory:45Hours	Total Hours: 45
	10tal 110ul S. 43
	10tal 110u13. 45
REFERENCES:	
 REFERENCES: 1. Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", Apress, 2. Sabina Jeschke, Christian Brecher, Houbing Song, Danda B. Rawat, "Industrial Internet of Things", Apress, 	2016.
REFERENCES: 1. Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", Apress,	2016.
 REFERENCES: 1. Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", Apress, 2. Sabina Jeschke, Christian Brecher, Houbing Song, Danda B. Rawat, "Industrial Internet of Things", Apress, 	2016. rial Internet of
 REFERENCES: 1. Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", Apress, 2. Sabina Jeschke, Christian Brecher, Houbing Song, Danda B. Rawat, "Industr Things: Cyber manufacturing Systems", Springer, 2017. 	2016. rial Internet of
 REFERENCES: Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", Apress, Sabina Jeschke, Christian Brecher, Houbing Song, Danda B. Rawat, "Industr Things: Cyber manufacturing Systems", Springer, 2017. Andrew Minteer, "Analytics for the Internet of Things (IoT): Intelligent anal intelligent devices", Packt Publishing, 2017. Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The E 	2016. rial Internet of ytics for your
 REFERENCES: Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", Apress, Sabina Jeschke, Christian Brecher, Houbing Song, Danda B. Rawat, "Industr Things: Cyber manufacturing Systems", Springer, 2017. Andrew Minteer, "Analytics for the Internet of Things (IoT): Intelligent anal intelligent devices", Packt Publishing, 2017. 	2016. rial Internet of ytics for your
 REFERENCES: Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", Apress, Sabina Jeschke, Christian Brecher, Houbing Song, Danda B. Rawat, "Industr Things: Cyber manufacturing Systems", Springer, 2017. Andrew Minteer, "Analytics for the Internet of Things (IoT): Intelligent anal intelligent devices", Packt Publishing, 2017. Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The E 	2016. rial Internet of ytics for your Evolving World of

5. Signature of BOS chairman, MCE

U18MCE0008		L	Т	Р	J	С
UISNICE0008	STATISTICAL QUALITY CONTROL	3	0	0	0	3

After	After successful completion of this course, the students should be able to					
CO1	Define the concept of probability and quality control	K2				
CO2	Explain various sampling method to measure quality and the attributes of quality.	K2				
CO3	Summarize the process behavior based on various control charts for variables.	K2				
CO4	Summarize the process behavior based on various control charts for attributes	K2				
CO5	Select the appropriate samples for the study.	K2				
CO6	Apply various techniques to improve the overall quality.	K2				

Pre-requisite

NIL

		CO/PO Mapping												
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
						Progr	amme (Dutcom	es(POs)					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	S	S		М					S					
CO2	S			М					S					
CO3	S	М		S										
CO4	S				S	М				S				
CO5														
CO6														

Direct	Indirect
1. Internal Test I	
2. Internal Test II	1.Course end survey
3. Assignment: Group Presentation	
4. End semester exam	

INTRODUCTION	9 Hours
Probability concepts, Review of distribution: Normal, Poison's, and Binomial, Problem	ms, Measuring of
quality and control, Value and quality, Quality costs, Quality assurance	-
CONTROL CHARTS FOR VARIABLES	9 Hours
Chance and assignable causes of quality variation, Control charts for variables, X-bar,	, R, and s-charts,
Warning and modified control limits, Process capability study, Ranges, Moving Avera	ages, and Six s-
limits, multivariate charts.	
CONTROL CHARTS FOR ATTRIBUTES	9 Hours
Limitation of variable chart, p-chart, problems with variable sample size, np-chart, c-	chart, u-chart, and
ku-chart, Demerits per unit control chart.	
ACCEPTANCE SAMPLING	9 Hours
Economics of sampling, Lot formation, OC-Curve-Producer's and Consumer's risk, S	ingle and double
sampling plans, AOQ, AOQL, ATI, ASN, Sequential sampling plan, MIL – STD – 10	-
STD – 414 tables, IS 2500 Standard.	
QUALITY IMPROVEMENT	9 Hours
Zero defects program, Quality circle, Fishbone diagram, scatter diagram, Pareto Analy	ysis, Deming cycle,
Introduction to Reliability function, System reliability of series, parallel, and combine	d configurations,
Reliability improvement techniques.	
Theory: 45Hours Total	Hours:45
REFERENCES:	
1. Grant E.L. and Leavenworth, "Statistical Quality Control", Tata McGraw-Hill Publish	ing Company, 5th
edition 2002.	
2. Douglas C. Montgomery, "Statistical Quality Control", John Wiley and Sons, 2001.	
3. Fiegenbaum, A.V., "Total Quality Control", McGraw-Hill Inc., 1991.	-11: 2006
4. Sharma S.C., "Inspection Quality Control and Reliability", Khanna Publishers, New D	eini, 2006
5. Srinath L.S "Reliability Engineering", Affiliated East west Press, 2005.	

5 Signature of BOS chairman, MCE

U18MCE0009

COMPOSITE AND SMART MATERIALS

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

 CO1 Recognize the need and characteristics of the composite mat CO2 Explain the manufacturing processes of composite materials CO3 Explain the applications of composites and its sustainability CO4 Explain the principle and working of Piezoelectric and Magr CO5 Explain the electro active materials and shape memory alloy 	• 1	
CO3Explain the applications of composites and its sustainabilityCO4Explain the principle and working of Piezoelectric and Magr	erials	K2
CO4 Explain the principle and working of Piezoelectric and Magr		K2
		K2
CO5 Explain the electro active materials and shape memory alloy	netostricitve materials	K2
	8	K2
CO6 Understand the concept behind smart composites		K2

Pre-requisite Nil

	CO – POMapping													
(S/M/W indicates strength of correlation) S – Strong, M – Medium, W - Weak														
col						Pro	ogram	Outco	mes					
CO's	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12	PSO1	PSO2
CO1	S													
CO2													М	
CO3							М							
CO4	S												М	
CO5													М	
CO6	М													
Cours	e Asses	sment	Metho	der										

Direct	Indirect						
1. Continuous Assessment Test I,II							
2. Assignment: Group Presentation, Project							
report, Poster preparation, Prototype or	1.Course end survey						
Product Demonstration etc. (as applicable)							
3. End Semester Examination							
INTRODUCTION TO COMPOSITE MATERI	ALS	9 Hours					
Need and general characteristics of composite mater	rials- mechanical advantages and limitat	ions					
Characteristics of fibers and matrixes - classification of composites - Prepregs - Lamina, Laminate and							
sandwich construction. Ceramics.							
MANUFACTURING AND QUALITY INSPECTION 9 Hours							

Fundamentals of curing – Bag molding process – compression and vacuum molding – filament winding - Quality inspection methods for raw materials - cure cycle monitoring - cured composite parts.

APPLICATIONS OF COMPOSITES AND SUSTAINABILITY 9 Hours Applications of composites - Natural fibers needs and its significance - Recycling of composites PIEZOELECTRIC AND MAGNETOSTRICTIVE MATERIALS

9 Hours

Introduction to Smart Materials, Principles of Piezoelectricty, Perovskyte Piezoceramic Materials, Single Crystals vs Polycrystalline Systems, Piezoelectric Polymers, Modelling Piezoelectric Actuators, Amplified Piezo Actuation - Internal and External Amplifications. Principles of Magnetostriction, Rare earth Magnetostrictive materials, Giant Magnetostriction and Magneto-resistance effect. Magnetostrictive Actuation, Joule Effect, Wiedemann Effect, Magneto volume Effect, Magnetostrictive Mini Actuators.

ELECTRO ACTIVE MATERIALS AND SHAPE MEMORY ALLOYS 9 Hours

Introduction to Electro-active Materials, Electronic Materials, Electro-active Polymers, Ionic Polymer Matrix Composite (IPMC), Shape Memory Effect, Shape Memory Alloys, Shape Memory Polymers, Electro-rheological Fluids, Magneto Rhelological Fluids. IPMC and Polymeric Actuators, Shape Memory Actuators. .

Theory: 45 Hours

Total: 45 Hours

References:

Mallick P K., "Fiber Reinforced Composites: Materials, Manufacturing and Design", 3rdEdition, 1. Maneel Dekker Inc, 2008.

Brian Culshaw, Smart Structures and Materials, Artech House, 2000 2.

3. Gauenzi, P., Smart Structures, Wiley, 2009

Cady, W. G., Piezoelectricity, Dover Publication 4.

Signature of BOS chairman, MCE

		L	Т	Р	J	С
U18MCE0010	ADDITIVE MANUFACTURING	3	0	0	0	3
Course Outcomes:						

COULD	concomes.							
After	After successful completion of this course, the students should be able to							
CO1	Recognize the development of AM technology and how AM technology propagated into various businesses and developing opportunities.	K2						
CO2	Acquire knowledge on process of transforming a concept into the final product in AM technology.	K2						
CO3	Elaborate the vat polymerization and material extrusion processes and its applications.	K2						
CO4	Acquire knowledge on powder bed fusion processes and its applications.	K2						
CO5	Acquire knowledge on direct energy deposition processes and its applications.	K2						
CO6	Evaluate the advantages, limitations, applications of binder jetting, material jetting and laminated object manufacturing processes.	K3						

Pre-requisite:

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
						Progra	amme	Outcon	nes(PO	s)				
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	S													М
CO2	S		М										М	М
CO3	S		М										М	М
CO4	S		М										М	М
CO5	S		М										М	М
CO6	S		М										М	М

Direct	Indirect
1. Continuous Assessment Test I,II	
2. Assignment:Group Presentation, Project	
report, Poster preparation, Prototype or	
Product Demonstration etc. (as	1.Course end survey
applicable)	
3. End Semester Examination	

INTRODUCTION	9 Hours	
Overview - Need - Development of Additive Manufacturing (AM) Technology: Rapid Prototyping-		
Rapid Tooling – Rapid Manufacturing – Additive Manufacturing. AM Process Chain-	- Classification –	
Benefits. Applications: Building Printing-Bio Printing- Food Printing-Printing Electronics. Business		
Opportunities and Future Directions - Intellectual Property.		
DESIGN FOR ADDITIVE MANUFACTURING (DFAM)	9 Hours	
Concepts and Objectives- AM Unique Capabilities: Part Consolidation-Topolog		
Lightweight Structure - DFAM for Part Quality Improvement. Data Processing		
Preparation –Part Orientation and Support Structure Generation -Model Slicing - Tool		
Generation-Customized Design and Fabrication for Medical Applications- Case Studi		
VAT POLYMERIZATION AND MATERIAL EXTRUSION	9 Hours	
Photo polymerization: Stereolithography Apparatus (SLA) - Materials -Proces	0	
Limitations-Applications. Digital Light Processing (DLP) - Materials – Process		
Applications. Extrusion Based System: Fused Deposition Modeling (FDM) - Process-	Materials -	
Applications and Limitations. POWDER BED FUSION AND DIRECT ENERGY DEPOSITION	9 Hours	
Powder Bed Fusion: Selective Laser Sintering (SLS): Process – Powder Fusion Mech		
Parameters – Typical Materials and Application. Selective Laser Melting (SLM) and		
Melting (EBM): Materials – Process - Advantages and Applications. Beam Deposition		
Engineered Net Shaping (LENS) - Process -Material Delivery - Process Parameters - N Benefits Applications	lateriais -	
Benefits - Applications. OTHER ADDITIVE MANUFACTURING PROCESSES	9 Hours	
Binder Jetting: Three-Dimensional Printing - Materials -Process - Benefits and Limitations. Material Jetting: Multijet Modeling- Materials- Process- Benefits. Sheet Lamination Process: Laminated		
Object Manufacturing (LOM)- Basic Principle- Mechanism: Gluing or Adhesive Bond		
Bonding- Materials-Application and Limitation.	ung – mermai	
	Total Hours: 45	
REFERENCES:		
1. Andreas Gebhardt and Jan-Steffen Hötter "Additive Manufacturing: 3D Printing"	g for	
Prototyping and Manufacturing", Hanser publications, United States, 2015,	5 101	
 Ian Gibson, David W. Rosen and Brent Stucker "Additive Manufacturing Technology" 	pologies: Rapid	
Prototyping to Direct Digital Manufacturing", 2nd edition, Springer., United Sta	ates, 2015,	
 Amit Bandyopadhyay and Susmita Bose, "Additive Manufacturing", 1st Edition United States, 2015, 	n, CRC Press.,	
4. AndreasGebhardt, "Understanding Additive Manufacturing: Rapid Prot	otyping, Rapid	
Manufacturing", Hanser Gardner Publication, Cincinnati., Ohio, 2012,.		
5. Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer., United States, 2011,		
6. Liou, L.W. and Liou, F.W., "Rapid Prototyping and Engineering applications: A	A tool box for	
prototype development", CRC Press., United States, 2019,	1 1	
	chnologies, and	
Applications", Woodhead Publishing., United Kingdom, 2016,		

U18MCE0011

DESIGN OF MATERIAL HANDLING SYSTEMS

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After successful completion of this course, the students should be able to			
CO1	Recognize the need and types of the Material Handling Equipments	K2	
CO2	Calculate the power requirements for a given belt conveyor	K3	
CO3	Select the components for the belt conveyors	K3	
CO4	Select and design the conveyors for the particular application	K3	
CO5	Differentiate the conveyors and elevators and design the bucket and cage elevators	K3	
CO6	Explain the various elements of the hoists	K2	

Pre-requisite

Nil

CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak Programme Outcomes(POs) Cos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO 1 PSO 2 **CO1** Μ CO2 Μ CO3 Μ Μ М **CO4** Μ W W W S М W **CO5** Μ Μ Μ **CO6** Μ Μ Μ

Direct	Indirect		
1. Continuous Assessment Test I,II			
2. Assignment: Group Presentation, Project report,			
Poster preparation, Prototype or Product	1.Course end survey		
Demonstration etc. (as applicable).			
3. End Semester Examination			
MATERIAL HANDLING EQUIPMENTS (MH	(E)	4 Hours	
Materials and Bulk materials – Types of material handling equipments – selection and applications of			
MHE. Automation in material handling system.			
BELT CONVEYORS		10 Hours	
General components of belt conveyors - Selection of belt speed and belt width – Drive unit design:			
Power requirement – coupling types and selection – Speed reduction: gearbox types and selection –			
Shaft and Pulley design – selection of Idlers and Idlers spacing – Safety devises for belt conveyors			
DESIGN OF OTHER CONVEYORS		10 Hours	

Apron conveyors, Screw conveyors, Cleat conveyors and Pneumatic conveyors			
ELEVATORS	11 Hours		
Conveyors and Elevators – Bucket elevators: centrifugal type and continuous type bucket elevators–			
Design of bucket elevators – Safety devices for bucket elevators Cage elevators: Shaft way, guides,			
counter weights – safety devises			
HOIST	10 Hours		
Design of Hoisting elements: Welded and roller chains – Hemp wire and ropes – Design of ropes –			
Pulley – sprockets and drums			
Load handling attachments – Forged and Eye hooks – crane grabs – lifting magnets – Grabbing			
attachments – arresting gears and brakes			
Theory:45Hrs Tot	tal Hours:45		
REFERENCES:			
1. Rudenko N., "Materials handling equipment", ELnvee Publishers, 1970.			
2. Fenner & Dunlop, "Conveyor Handbook"			
2. David VHutton "FundamentalsofFiniteElementAnalysis",McGraw-HillInternationalEdition,			
2004.			
2. Alexandrov M, Materials Handling Equipments, MIR Publishers, 1981.			

4. <u>A. Spivakovsky</u>(Author),<u>V. Dyachkov</u>(Author),<u>D. Danemanis</u> (Translator) Conveyors and Related Equipment, 1966.

5. Signature of BOS chairman, MCE

DESIGN FOR MANUFACTURE AND ASSEMBLY

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After s	After successful completion of this course, the students should be able to										
CO1	Explain the design principles for manufacturability and factors influencing it	K2									
CO2	List and explain the factors influencing form design.	K2									
CO3	Explain the design considerations for cast steel and casting process	K2									
CO4	Explain the design considerations various machining process.	K2									
CO5	Explain the use of computer in DFMA.	K2									
CO6	Describe the Design considerations and Guidelines for assembly.	K3									

Pre-requisite

Nil

	CO/PO Mapping														
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
Cos	Programme Outcomes(POs)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
C01	М														
CO2	М														
CO3	М		М										М		
CO4	М	W	S										М	W	
CO5	М	W	М		W								М		
CO6	М		М										М		
Course			41		-	•	-	•			•	•		•	

Course Assessment methods:

	Direct	Indirect	
1.	Continuous Assessment Test I,II		
2.	Assignment: Group Presentation, Project report,		
	Poster preparation, Prototype or Product	1.Course end survey	
	Demonstration etc. (as applicable).		
3.	End Semester Examination		
IN'	FRODUCTION		9 Hours

General design principles for manufacturability –Factors influencing design-Types of problems to be solved- evaluation of customer's requirements-Systematic working plan for the designer-Types of problems to be solved-Possible Solutions-Evaluation method- Process capability - Feature tolerances -Geometric assembly. tolerances - Assembly limits -Datum features - Tolerance stacks-Interchangeable part manufacture and selective

FACTORS INFLUENCING FORM DESIGN

Materials choice - Influence of basic design, mechanical loading, material, produc size and weight on form design- form design of welded members and forgings-case	
COMPONENT DESIGN – CASTING CONSIDERATION	9 Hours
Form design of grey iron, steel, malleable iron and aluminum castings. Redesign on parting line considerations - Minimizing core requirements, machined holes, members to obviate cores-case studies	-
COMPONENT DESIGN - MACHINING CONSIDERATION	9 Hours
Design features to facilitate machining - drills - milling cutters - keyways - Dowe counter sunk screws - Reduction of machined area- simplification by separation - amalgamation - Design for machinability - Design for economy - Design for clam for accessibility - Design for assembly. Identification of uneconomical design design - Computer Applications for DFMA- case studies	simplification by pability - Design
DESIGN FOR ASSEMBLY	9 Hours
Design for assembly (DFA) - The assembly process - Economic production quantic considerations - Guidelines for assembly Improvement- Rivets - Screw fasteners - Fits - press-fits - snap-fits. Weldments - Characteristics and applications of arc v Economic Production Quantities - Design Recommendations.	Metal stitching
Theory:45Hrs	Total Hours:45
REFERENCES: 1. Geoffrey Boothroyd, G, , Assembly Automation and Product Design.New Dekker,2011	York, Marcel
2. Bralla, Design for Manufacture handbook, McGraw hill, 1999.	

2. Bralla, Design for Manufacture handbook, McGraw hill,1999.

3. Kevien Otto and Kristin Wood, Product Design. Pearson Publication,2004.

5 Signature of BOS chairman, MCE

PRECISION MANUFACTURING

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After s	uccessful completion of this course, the students should be able to	
CO1:	Describe different types of Unconventional Machining processes and principle of mechanical energy based unconventional machining processes.	K2
CO2:	Explain the working principle of electrical energy based unconventional machining processes.	K2
CO3:	Explain the working principle of chemical energy based unconventional machining processes.	K2
CO4:	Explain the working principle of electro chemical energy based unconventional machining processes.	K2
CO5:	Explain the working principle of thermal energy based unconventional machining processes.	K2
CO6:	Describe the working principle of super finishing process.	K2

Pre-requisite

Nil

CO/PO Mapping

	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
CO -	Programme Outcomes(POs)													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	М	W												
CO2	М	Μ												
CO3	М	Μ											М	
CO4	М	Μ				W							Μ	W
CO5	М	Μ											Μ	
CO6	М	Μ											М	

Course Assessment methods:

Direct	Indirect								
1. Internal Test I									
2. Internal Test II	1.Course end survey								
3. End semester Examination Assignment									
MECHANICAL ENERGY BASED PROCES	SSES	9 Hours							
Introduction Unconventional Machining Process, Need	Introduction Unconventional Machining Process, Need, Classification, Brief overview of all techniques,								
Abrasive Jet Machining – Water Jet Machining – Abr	asive Water Jet Machining- Ultr	rasonic Machining							
(AJM, WJM, AWJM, USM). Working Principles – equi	pment used – Process parameters	- MRR -							

Applications.

ELECTRICAL ENERGY BASED PROCESSES	9 Hours
Electric Discharge Machining (EDM) - working Principles-equipment-Process P	
electrodes Used - Power Circuits - Dielectric - Flushing - Applications, Wire C	ut EDM
Applications.	
CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED	9 Hours
PROCESSES	
Chemical machining and Electro-Chemical machining (CHM and ECM)-Etchant	s – Maskant-
techniques of applying maskants - Process Parameters - Surface finish and MRR	-Applications.
Principles of ECM- equipments - MRR -Process Parameters- ECG and ECH - A	pplications.
THERMAL ENERGY BASED PROCESSES	9 Hours
Laser Beam Machining (LBM), Plasma Arc Machining (PAM) and Electron Bea (EBM), Principles-Equipment – MRR - Process Parameters - Applications.	m Machining
SUPER FINISHING PROCESS	9 Hours
Super finishing process – Honing - honing machines, Process parameter, MRR –	Lapping –
characteristics, Types of lapping, lapping machines, and Super finishing – Burnis	
float polishing, Magnetic field assisted polishing, Electro polishing	
Theory:45Hrs	Total Hours:45
·	
REFERENCES:	
1. Vijay K Jain "Advanced Machining Processes", first edition, Allied Publishers	Pvt. Ltd., New
Delhi, 2007.	,
2. Benedict G F. "Nontraditional Manufacturing Processes", Marcel Dekker Inc.,	New York,
1987	,
3. Pandey P C and Shan H S. "Modern Machining Processes", Tata McGraw-Hil	l, New Delhi,
1980.	
4. Hassan Abdel-Gawad El-Hofy "Advanced Machining Processes: Nontradition Machining Processes" Tata McGraw-Hill, New Delhi, 2005	al and Hybrid

Sau Signature of BOS chairman, MCE

OPERATION RESEARCH

 L
 T
 P
 J
 C

 3
 0
 0
 0
 3

Course Outcomes

After successful completion of this course, the students should be able to									
CO1:	Apply linear programming model and assignment model to domain specific situations.	K2							
CO2:	Analyze the various methods under transportation model and apply the model for testing.	K2							
	the closeness of their results to optimal results								
CO3:	Apply the concepts of PERT and CPM for decision making and optimally managing.	K2							
	projects								
CO4:	Analyze the various replacement and sequencing models and apply them for arriving at	K2							
	optimal decisions.								
CO5:	Analyze and apply appropriate inventory techniques in domain specific situations.	K2							
CO6:	Analyze and apply appropriate queuing theories in domain specific situations.	K2							
D									

Pre-requisite

Nil

CO/PO Mapping

	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak														
	Programme Outcomes(POs)														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2	
CO1	S	S		S									W		
CO2	S	S		S									W		
CO3	S	S		S						S			W		
CO4	S	S		S									W		
CO5	S	S		S									W		
CO6	S	S		S									W		

Course Assessment methous.						
Direct	Indirect					
1. Internal Test I						
2. Internal Test II1.Course end survey						
3. Assignment						
4. End semester Examination						
LINEAR MODEL	9 Hours					
The phases of OR study – formation of an L.P model	- graphical solution - simplex alg	orithm –				
artificial variables technique (Big M method, two pha	ase method), duality in simplex.					
TRANSPORTATION AND ASSIGNMENT P	9 Hours					
Transportation model – Initial solution by North Wes	t corner method – least cost metho	d – VAM.				
Optimality test – MODI method and stepping stone method. Assignment model – formulation –						
balanced and unbalanced assignment problems. Traveling salesman problem						
PROJECT MANAGEMENT BY PERT & CP	M	9 Hours				

Basic terminologies – Constructing a project network – Scheduling computations – PERT - CPM –					
Resource smoothening, Resource leveling, PERT cost					
REPLACEMENT AND SEQUENCING MODELS	9 Hours				
Replacement policies - Replacement of items that deteriorate with time (value of money not changing with time) – Replacement of items that deteriorate with time (Value of money changing with time) – Replacement of items that fail suddenly (individual and group replacement policies). Sequencing models- n job on 2 machines – n jobs on 3 machines – n jobs on m machines, Traveling salesman problem					
INVENTORY AND QUEUING THEORY 9 Hours					
Variables in inventory problems, EOQ, deterministic inventory models, order quantity with price break, techniques in inventory management. Queuing system and its structure – Kendall's notation – Common queuing models - $M/M/1$: FCFS/ ∞/∞ - $M/M/1$: FCFS/ n/∞ - $M/M/C$: FCFS/ ∞/∞ - $M/M/1$: FCFS/ n/m					
Theory:45Hrs Tota	l Hours:45				
REFERENCES:					
1. Taha H A., "Operation Research", Pearson Education, 2007.					
2. Hira and Gupta "Introduction to Operations Research", S. Chand and Co.2012					

3. Hira and Gupta "Problems in Operations Research", S. Chand and Co.2010

4. Wagner, "Operations Research", Prentice Hall of India, 2000

< Signature of BOS chairman, MCE

FINITE ELEMENT ANALYSIS

L	Τ	Р	J	С
3	0	0	0	3

Course Outcomes

After	After successful completion of this course, the students should be able to						
CO1:	Develop the governing equations for a continuum.						
CO2:	Model and assemble the stiffness matrices for 1D, 2D elements.	K3					
CO3:	Explain about plane stress and plane strain	K3					
CO4:	Choose the appropriate element type for a particular application.	K3					
CO5:	Apply the FEM for plate bending and thermal analysis	K3					
CO6:	Apply different case study of finite element analysis	K3					

Pre-requisite

Nil

CO/PO Mapping

	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
COs		Programme Outcomes(POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2
C01	S	S							S		S	S		
CO2	S	S	М								S	S	М	
CO3	S		S		S						S		S	
CO4	S		S			S					S		S	

Course Assessment methods:

	Direct	Indirect
1.	Internal Test I	
2.	Internal Test II	Course end survey
3.	End semester Examination	
4.	Assignment	

INTRODUCTION

Historical background – Introduction to FEA – Review of Matrix Algebra and Gaussian elimination – Governing equations for continuum – Spring assemblage – Stiffness method & Potential Energy Approach – Galerkin''s weighted residual method.

ONE DIMENSIONAL ELEMENTS – BAR, PLANE TRUSS & BEAM 9 Hours

Bar element - Stiffness Matrix in local and global coordinates, Computation of Stress – Potential EnergyandGalerkin^{**}sresidualmethod–SolutionofPlaneTruss–Beamelement–Stiffnessand assembly of stiffness matrices - Potential energy and Galerkin sapproach.

PLANE STRESS & PLANE STRAIN – CST & LST APPROACH

8 Hours

9 Hours

Binomial, Poisson and Normal distributions – properties- Fitting of Binomial, Poisson and normal distributions to data

AXISYMMETRIC ELEMENTS AND ISOPARAMETRIC	10 Hours					
FORMULATION						
Axisymmetric formulation - Stiffness Matrix - Pressure Vessel Analysis - App	lications –					
Isoparametric formulation – Formulation for Bar and Plane Elements – Numerical Integ						
Gaussian & Newton-Cotes Quadrature – Evaluation of Stiffness Matrix by Gaussian Qu						
PLATE BENDING AND THERMAL ANALYSIS	9 Hours					
Basic Concepts of Plate Bending - Element Stiffness Matrix and Equations - Heat Tran	sfer –					
Basic Differential Equation and Units – 1d and 2d formulation.						
CASE STUDY: Finite Element Analysis on Bicycle Frame, Finite Element Analysis of	on V-					
belt pulley of a fodder crushing machine.						
Theory:45Hrs Total Hours:45						
REFERENCES:						
1. Daryl, L. Logan, "A First course in the Finite Element Method", Thomson Learning	, 4th edition,					
2007.						
2. Chandrupatla T.R., and Belegundu A.D., "Introduction to Finite Elements in Engine	ering",					
Pearson Education, 3rd Edition, 2002.						
3. David V Hutton "Fundamentals of Finite Element Analysis", McGraw-Hill International	ional Edition,					
2004.						
4. Rao S.S., "The Finite Element Method in Engineering", Pergammon Press, 1989.						
5. N. Reddy, "An Introduction to the Finite Element Method", Tata McGraw Hill, 3rd	Edition,					
2005.						

5--Signature of BOS chairman, MCE

MAINTENANCE ENGINEERING

L	Τ	Р	J	С
3	0	0	0	3

Course Outcomes

After	After successful completion of this course, the students should be able to					
CO1:	Extend the concept and function of maintenance department and costs associated.	K2				
CO2:	Plan for preventive maintenance.	K2				
CO3:	Schedule and evaluate the maintenance.	K2				
CO4:	Test the reliability in maintenance.	K2				
CO5:	Analyze manpower requirement.	K2				
CO6:	Explain the maintenance of mechanical and electrical systems.	K2				

Pre-requisite

Nil

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
	Programme Outcomes(POs)													
COs	PO1	PO2	PO3	РО	PO5	PO6	PO7	PO8	PO9	РО	PO11	РО	PS	P S
	101	102	105	4	100	100	107	100	105	10	1011	12	01	0 12
CO1	М								S				S	
CO2		M	М									W		S
CO3			М										M	
CO4											S		S	
CO5									S					S
CO6	S													S

Course Assessment methods:

Internal test I	Internal test I
 Internal Test I Internal Test II Group Presentation End Semester exam 	Course end survey
MAINTENANCE CONCEPT	9 Hours

Maintenance objectives, levels, types of systems, benefits, effects – Responsibilities of maintenance department – Concept of maintainability – Principles of Maintenance – R&D, Overhauling and Expert systems in Maintenance, Maintenance cost and budget.

PLANNED PREVENTIVE MAINTANANCE

Scope and elements of PPM, Implementation, work planning and scheduling Planned maintenance procedure, effectiveness of preventive maintenance, development of checklist.

MAINTENANCE EVALUATION, PLANNING AND SCHEDULING	9 Hours				
Maintenance evaluation, planning of maintenance function, development of maintenance estimation of maintenance work maintenance scheduling.	nce department,				
RELIABILITY IN MAINTENANCE	9 Hours				
Reliability, failure functions and their models, application, design for reliability, quality reliability improvement and testing.	and reliability,				
MANPOWER PLANNING MAINTENANCE OF MECHANICAL AND ELECTRICAL SYSTEMS	9 Hours				
Manpower planning: Objectives, stages, Timescale, Estimation Mode, Maintenance of Be	earings, Friction				
clutches, Couplings, Fastening devises, Chains, Gear Drives, Support Equipments, Electric	cal Equipments.				
Theory:45Hrs Total Hours:45					
REFERENCES					
1. Mishra, R.C., K.Rathak, Maintenance Engineering and Management, Prentice Ha 2ndEdition, 2012.	all of India,				
2. Er. Sushil Kumar Srivastava, Maintenance Engineering (Principles, Prac Management) S.Chand	ctices and				

Signature of BOS chairman, MCE

L	Т	Р	J	С
3	0	0	0	3

Course Outcomes

After s	After successful completion of this course, the students should be able to					
CO1	Explain different measurement techniques used in physiological parameters measurement.	K2				
CO2	Describe the different sensors and transducer principles used in bio medical application	K2				
CO3	Describe the signal conditioning circuits used in biomedical engineering.	K2				
CO4	Comment on various measurement systems used in diagnostics.	K2				
CO5	Comment on various monitoring systems used in diagnostics	K2				
CO6	Differentiate the working of recorders and explain the advanced systems used in medicine.	K2				

Pre-requisite

Nil

	CO/PO Mapping											
(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak												
		Programme Outcomes (POs)										
COs	РО	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	1											
CO1	Μ											М
CO2	М			W								М
CO3	Μ			М								М
CO4	М	W										М
CO5	Μ	W										М
CO6	Μ				М							М

Course Assessment methods:

Internal test I	Internal test I	
Internal test I	Course end survey	
Internal test II		
End semester Examination		
Assignment		
INTRODUCTION		9 Hours

INTRODUCTION9 HoursIntroduction to the physiology of cardiac, nervous & muscular and respiratory systems. Transducers and
Electrodes: Different types of transducers & their selection for biomedical applications. Electrode theory,
selection criteria of electrodes & different types of electrodes such as, Ag – Ag Cl, pH, etcBIO-MEDICAL SENSORS AND TRANSDUCERS9 Hours

Basic transducer principles Types — resistive, inductive, capacitive, fiber-optic, photoelectric, chemical, active and passive transducers and their description and feature applicable for biomedical instrumentation – Bio, Nano sensors and application.

BIO AMPLIFIER	9 Hours
Need for bio-amplifier - single ended bio-amplifier, differential bio-amplifier	r – right leg driven ECG
amplifier. Band pass filtering, isolation amplifiers - transformer and optical i	isolation - isolated DC
amplifier and AC carrier amplifier. Chopper amplifier. Power line interference	ce
MEDICAL MEASUREMENT AND MONITORING SYSTEMS	9 Hours
electromagnetic flow meter, cardiac output measurement by dilution method – cardiography. Heart lung machine – artificial ventilator – Anesthetic machine – MRI and ultrasonic scanner – cardiac pacemaker –defibrillator patient safet Centralized patient monitoring system.	- Basic ideas of CT scanne
RECORDERS AND ADVANCED SYSTEMS	9 Hours
Oscillagraphic – galvanometric - thermal array recorder, photographic reco electron microscope. Biotelemetry, Diathermy, Audiometers, Dialysers, Lith	rder, storage oscilloscopes
Oscillagraphic – galvanometric - thermal array recorder, photographic reco	rder, storage oscilloscopes
Oscillagraphic – galvanometric - thermal array recorder, photographic reco electron microscope. Biotelemetry, Diathermy, Audiometers, Dialysers, Lith Hot wire Anemometry for respiratory flow measurements.	order, storage oscilloscopes notripsy. CASE STUDIES
Oscillagraphic – galvanometric - thermal array recorder, photographic reco electron microscope. Biotelemetry, Diathermy, Audiometers, Dialysers, Lith Hot wire Anemometry for respiratory flow measurements. Theory:45Hrs REFERENCES	order, storage oscilloscopes notripsy. CASE STUDIES Total Hours:45
Oscillagraphic – galvanometric - thermal array recorder, photographic reco electron microscope. Biotelemetry, Diathermy, Audiometers, Dialysers, Lith Hot wire Anemometry for respiratory flow measurements. Theory:45Hrs	order, storage oscilloscopes notripsy. CASE STUDIES Total Hours:45
Oscillagraphic – galvanometric - thermal array recorder, photographic reco electron microscope. Biotelemetry, Diathermy, Audiometers, Dialysers, Lith Hot wire Anemometry for respiratory flow measurements. Theory:45Hrs <u>REFERENCES</u> 1. Khandpur R S., "Handbook of Biomedical Instrumentation", TMH, 20 2. Cromwell, Weibell and Pfeiffer, "Biomedical Instrumentation an	Total Hours:45

4. Tompkins W J., "Biomedical Digital Signal Processing", Prentice Hall of India, 2000.

5. Arumugam M, "Bio-Medical Instrumentation", Anuradha Agencies, 2006.

< Signature of BOS chairman, MCE

OPEN ELECTIVES

ROBOTICS FOR ENGINEERS

L Т Р J С 3 0 0 0 3

Course Outcomes

After	After successful completion of this course, the students should be able to					
CO7:	Describe about the robot laws ,kinematics and dynamics	K3				
CO8:	Discuss about various robotic drives and control	K2				
CO9:	Illustrate the various sensor used in robotic control	K2				
CO10	Brief about the image optimization techniques	K3				
CO11	Discuss about the application of robots in various fields	K2				

Pre-requisite Nil

	CO/PO Mapping (S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak											
	Programme Outcomes (POs)											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO12
CO1	S										S	S
CO2	S		М								S	S
CO3	S	S				W					S	
CO4	S					W					S	S
CO5	S		М					М			М	М

DIRECT	INDIRECT	
1. Continuous Assessment Test I, II	1. Course -end survey	
2. Open book test; Cooperative learning report,		
Assignment; Journal paper review, Group		
Presentation, Project report, Poster preparation,		
Prototype or Product Demonstration etc. (as		
applicable)		
3. End Semester Examination		
INTRODUCTION		10 Hours
Evolution of robotics - Laws of robotics - classification	on - robot anatomy – specification	– Resolution,
repeatability and precision movement. Introduction to re	obot arm kinematics and dynamics	– planning of
manipulator trajectories.	•	r c
ROBOTIC DRIVES AND CONTROL		10 Hours
Hydraulic, Electric and Pneumatic drives – linear and rotary	actuators - end-effectors - classificati	on-control of
robot manipulator - variable structure control - non-linear de	coupled and feedback control – effect	of external
disturbance – PID control scheme – resolved motion control	- computed torque control, force control	ol of robotic
manipulators. Adaptive control.		
SENSORS		10 Hours
SENSUKS		10 Hours

Need for sensing system - classification of robotic sensors - status sensors, environmental sensors, quality control sensors, safety sensors and work cell control sensors. – non-optical and optical position sensors – velocity sensors – proximity sensors – contact and noncontact type – touch and slip sensors – force and torque sensors – selection of right sensors.

MACHINE VISION SYSTEM

10 Hours

Image Sensing and Digitizing - Image definition, Image acquisition devices, specialized lighting techniques. Digital Images - Sampling, Quantization and Encoding. Image storage. Image Processing and Analysis Data reduction – digital conversion and windowing. Segmentation – Thresholding, Edge detection and Region growing. Binary Morphology and grey morphology operations. Feature Extraction, Object recognition, Depth measurement.

APPLICATION

5 Hours

Introduction - Delivery Robots – Intelligent vehicles – Survey and inspection robots – Space Robots – Autonomous aircrafts – Underwater Inspection – Agriculture and Forestry.

Theory:45Hrs

Total Hours:45

REFERENCES

1. Saeed B Niku, 'Introduction to Robotics', 2nd edition, Prentice Hall of India, 2010.

- 2. S. R. Deb and S. Deb, "Robotics Technology and Flexible Automation", Tata McGraw Hill Education Pvt. Ltd, 2010.
- 3. Mikell P. Groover, "Industrial Robots Technology, Programming and Applications", McGraw Hill, New York, 2008.
- 4. Fu K S, Gonzalez R C, Lee C.S.G, "Robotics: Control, Sensing, Vision and Intelligence", McGraw Hill, 1987

5. Ramesh Jam, Rangachari Kasturi, Brain G. Schunck, "Machine Vision", Tata McGraw-Hill, 1995.

6. Yoremkoren, "Robotics for Engineers", McGraw-Hill, USA, 1987.

7. P.A. Janaki Raman, "Robotics and Image Processing", Tata McGraw-Hill, 1991.

Signature of BOS chairman, MCE

U18MCO0002

L	Т	Р	J	С
2	0	1	0	3

Course Outcomes

After	After successful completion of this course, the students should be able to						
CO1:	To understand the basics of automation in agriculture.	K2					
CO2:	To understand the concepts of Precision agricultural systems and trends	K2					
CO3:	To understand importance of automation in Irrigation systems	K2					
CO4:	To understand the various Automation Practices in agriculture through case studies.	K2					
CO5:	To know the Applications in material handling and packaging industries	K2					

Pre-requisite

Nil

CO/PO Mapping

$(D/M) \neq D$	(S/M/W indicates	strength of correlation	i) S-Strong,	M-Medium,	W-Weak
----------------	---	-----------------	-------------------------	--------------	-----------	--------

CO						Prog	ramme	Outcor	nes(PO	s)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO
	~													2
CO1	S												S	
CO2	S					W								М
CO3	S			S										М
CO4	S			S				W					S	
CO5		М		S				W					S	

Course Assessment methods:

DIRECT	INDIRECT
5. Internal Test I	Course end survey
6. Internal Test II	
7. Assignment	
8. Group Presentation	
9. End semester exam	
AUTOMATION IN AGRICULTURE	10 Hours

Introduction to automation- Robot farming system –wheel type robot tractor, crawler type robot tractor, rice planting robot, robot combine harvester – sensing crop status.

PRECISION AGRICULTURAL SYSTEMS

Soil sensors- crop sensors – yield monitors –remote sensing- airborne multispectral and hyperspectral imaging-satellite imaging system- Principle – applications

IRRIGATION SYSTEMS

Introduction –Types of irrigation system GIS in irrigation -Planning and design – rain fall monitoringdrought monitoring- automated controller-based irrigation system-IOT based irrigation system- case study evaluation of irrigation system in agriculture

10 Hours

AU'	TOMATION PRACTICES	10 Hours							
Fiel	Field crop production automation – Mechanization, Sensing and Control in cotton production – Automatic								
Rut	bber Tapping								
	Theory: 45 Total Hours:45								
REI	FERENCES								
1.	Qin Zhang, Francis J. Pierce, "Agricultural Automation: Fundamentals and Practices", CRC	Press, A Chapman and							
	Hall Book, 2013								
2	Qin Zhang, "Precision Agriculture Technology for Crop Farming", CRC Press, 2016.								
3	Irrigation Systems, A Laycock, Irrigation Systems-Design, Planning and Construction ,2011								
4	Shimon Y Nof, Springer Handbook of Automation ,2009.								
5	Jensen, J.R., 2004. "Introductory Digital Image Processing: A Remote Sensing Perspective". Prentice – Hall.								
	New Jersey.								
6.	A.M.Michael, 2010. Irrigation - theory and practice, Vikas publishers, New Delhi.								
7	http://cyber.sci-hub.tw/MTAuMTIwMS9iMTkzMzYtMTE=/10.1201%40b19336-11.pdf /								
8	https://link.springer.com/chapter/10.1007/978-3-540-78831-7_63								
9	https://www.safaribooksonline.com/library/view/agricultural-systems-agroecology/978012	8020951							
10	http://sci-hub.tw/10.1080/10106048709354084								
11	https://www.safaribooksonline.com/library/view/sustainable-water-engineering/978111854	1029/							
12	https://www.coursera.org/specializations/gis								

5. -Signature of BOS chairman, MCE

	Machanias in Cristat	L	Т	Р	J	C
U18MCO0005	Mechanics in Cricket	3	0	0	0	3

Course OBJECTIVES

- 1. To encourage, support and motivate the students to learn and understand concepts with a real-time things or with a sports related activity
- 2. To know the design aspects and mechanics behind the sports equipment designs
- 3. To develop goal oriented synergetic approach by rectifying errors in the pressure situations
- 4. To develop team spirit and be a team worker.
- 5. To analyze and anticipate the changes in the game and thereby reacting according to the situation

Course Outcomes

After successful completion of this course, the students should be able to								
CO1:	Understand the basic principles, rules and regulations and the skills of the game, tactics, field	K2						
	placement and umpiring signals							
CO2:	Interpret the technical knowledge in the aspects of cricket	K3						
CO3:	Illustrate and make use of material science concepts in the design of cricket equipments	K3						
CO4:	Apply and interpret the knowledge of solid mechanics and fluid mechanics in the batting and bowling aspects of cricket	K3						
CO5:	Discover and explain the applications of sensor and instrumentation in the game of cricket	K3						
D								

Pre-requisite

U17MET2003 Engineering Mechanics

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
CO		Programme Outcomes(POs)												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO1			М							М		М		
CO2	S	S	W							М		М	М	М
CO3	W	W	S							М		М	М	М
CO4	S	S	S							М		М	М	М
CO5	М	Μ	S							М		М	М	М
C				1										

DIRECT	INDIRECT						
1. Continuous Assessment Test I, II	1. Course-end survey						
2. Assignments, Journal paper review, Group							
Presentation, Prototype or Product Demonstration							
Open book test, Quiz etc. (as applicable)							
3. End Semester Examination							
Introduction to the Game of Cricket	9 Hours						
Introduction – Evolution of cricket – Basic rules and regulations – Various types or levels of cricket – Ground,							
Pitch and equipment's, Ground and pitch preparation, Ph	ysical conditioning for cricket, Stamina improvement						

exercises for batting, bowling and fielding Batting – Batting posture - Stance, Bat lift, Position and orientation of bat for various types of shots or strokes Bowling - Bowling - Ball grip, seam position and its effects in trajectory of the ball - Seam and Face bowling – Various Slower delivery techniques - Naku Ball, Split Finger, Leg cutter, Off cutter, Position and orientation for various Spin Bowling - Leg Spin, Off Spin, Top spin, Chinaman, Googly, Carom ball Various Aspects of Cricket Player and Umpire 9 Hours Fielding – Fielding Positions, Judgments according to field positions, Field adjustments according to trajectory of bowlers, Catching – Low, Flat, High catches at different positions, Slip catching, Throwing – Under arm, Flat, Long throw Wicket-keeping – Stance for spin and pace / seam bowling – Upto the stumps, Behind the stumps, Stumping, **Run-outs** Umpiring – 42 laws of cricket – interpretation and its application, Different signals – Stance and movements for run-outs, Eligibility criteria, Calculations for Organizing a cricket tournament – Matches, Run-rate Material Science and Composite Materials in Cricket 9 Hours Various types of cricket – Depends on ball usage – White, Red, Pink - SG, Kookaburra, Dukes – Various design considerations in the design of cricket bats and balls - CNC Machines in design of bats - Various materials used for the design of cricket bat – Aluminum, Carbon composite, Graphite – Handle materials – Cane, Willow, Rubber, Polyurethane – Design modifications in Cricket Bat – Selection of cricket bats – Knocking of bats **Solid Mechanics and Fluid Mechanics in Cricket** 9 Hours Fluid mechanics related to Ball Swing - Inswing, Out Swing, Reverse Swing - Laminar and Turbulent flow Case studies : Smith, Warner and Bancroft ban issue – Various ball tampering incidents - Captaincy – Player managements, Field Placements related to bowlers and strengths of batsmen, Pressure situation analysis, reacting according to the situations on and off the field, motivational aspects for players Solid mechanics related to Ball – Bat Contact and Trajectory – Conservation of momentum, Impact of elastic bodies, Curvilinear motion - Projectile motion - Ball validation related to Co-efficient of restitution **Sensor and Instrumentation in Cricket** 9 Hours Go and No-Go Gauges for ball circularity measurement – Hawk Eye – Snicko meter – Hot Spot – Light Meter - LED Stumps - Ball Speed Sensor - Bat Swinging Speed Sensor (Intel) - Drone for Pitch Analysis -Bowling action verification Theory: 45 Hours **Total: 45 Hours** REFERENCES The Handbook of Cricket, K. V. Andrew 1. 2. The Skills of Cricket, K. V. Andrew **OTHER REFERENCES** 1. Cricket - The Techniques of the Game, Andrew, Carter, Lenham 2. A History of Cricket, B. Green 3. The MCC Cricket Coaching Book (Fourth Edition) 4. Wisden Cricketers' Almanack (Printed Annually) 5. Test Cricket in Clubs and Schools (Available from NCA) 6. How to Coach Cricket, R. Dellor 7. Games for Cricket Training, A. Oakman 8. The Laws of Cricket (1980 Code) Second Edition 1992.

5. Signature of BOS chairman, MCE

	LOW COST AUTOMATION	L	Т	Р	J	С
U18MCO0006	LOW-COST AUTOMATION	3	0	0	0	3

Course Outcomes

After	After successful completion of this course, the students should be able to								
CO1:	To provide basic knowledge to implement low cost Automation in various industries	K2							
CO2:	To study the pneumatics devices and circuits and its applications	K2							
CO3:	To understand the Hydraulic devices and circuits	K2							
CO4:	To configure the Automation assembly lines used in industries	K2							
CO5:	To know the Applications in material handling and packaging industries	K2							

Pre-requisite

U17MET2003 Engineering Mechanics

	CO/PO Mapping													
	(S/M/W indicates strength of correlation) S-Strong, M-Medium, W-Weak													
CO -						Prog	ramme	Outcor	nes (PC	Ds)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO1	S												S	М
CO2	S												S	М
CO3	S		М		М								S	М
CO4	S		М		М								S	М
CO5	S												S	М

Course Assessment methods:

DIRECT	INDIRECT
1. Internal Test I	Course end survey
2. Internal Test II	
3. Assignment	
4. Group Presentation	
5. End semester exam	
INTRODUCTION TO AUTOMATION	5 Hours

Automated manufacturing systems, fixed /programmable /flexible automation, Need of automation, Basic elements of automated systems- power, program and control. Levels of automation; control systems: Continuous and discrete control; Low cost automation, Economic and social aspects of automation.

BASICS OF PNEUMATICS AND CIRCUIT DESIGN

Operational principles and application, air compressors, Pneumatic cylinders and air motors, Pneumatic valves, Design of pneumatic circuits: speed control, reciprocating, synchronization and sequencing circuits. Hydro-pneumatic, Electro pneumatic Control in pneumatic systems.

BASICS OF HYDRAULICS AND CIRCUIT DESIGN

Principles of hydraulics, Hydraulic fluids, Filtration technology, Hydraulic- pumps, valves, and actuators. Standards in circuit diagram representation, Power pack design layout, Basic hydraulic circuits.

12 Hours

ASS	SEMBLY AUTOMATIC	DN:	8 Hours
Тур	es and configurations, Pa	ts delivery at workstations-Various vibra	tory and non-vibratory devices for
feed	ling, hopper feeders, rota	ry disc feeder, centrifugal and orientatio	n, Product design for automated
asse	embly.		
API	PLICATIONS AND CA	SE STUDIES:	8 Hours
		oor opening- labelling Alignment method locking and clamping devices.	examples- Direction Change-
	Theory: 45	Tutorials: 0 hour	Total Hours:45
RE	FERENCES		
1.	Anthony Esposito, "Fluid	Power with applications", Prentice Hall intern	national, 2014.
2	Mikell P Groover, "Autom	ation, Production System and Computer Inte	grated Manufacturing", Prentice Hall
	Publications, 2016.		
3	Kuo.B.C, "Automatic cont	rol systems", Prentice Hall India, New Delhi	, 2007.
4	James A Sullivan, "Fluid p	ower Theory and Applications", 4th edition,	C.H.I.P.S, 2007.
5	Mujumdar.S.R, "Pneumati	c System", Tata McGraw Hill 2009	
6.	.E.G. Phillips, "Pneumatic	conveying", 2017.	

U18MCO0007

MAGICS AND MECHANICS

L	Т	Р	J	С
2	0	1	0	3

Course OBJECTIVES

- 1. To understand the mechanical engineering terminologies related to electrical/control/instrumentation engineering.
- 2. To understand the Modes of Heat transfer.
- 3. To understand thermoelectric power generation.

Course Outcomes

After	successful completion of this course, the students should be able to	
CO1:	Illustrate the mechanical terminologies and compare them with appropriate electrical	
	terminologies.	
CO2:	Find the resultant of force system, resolution of forces.	
CO3:	Solve the problems related to frictional losses.	
CO4:	Describe inertia and its effects on drive selection.	
CO5:	Analyze the heat transfer rate and thermoelectric power generation.	

Pre-requisite

U17MET2003 Engineering Mechanics

CO/PO Mapping

							•							
		(S/N	1/W inc	licates s	strength	of cor	relation	i) S-	-Strong	, M-Med	ium, W-Y	Weak		
CO -						Prog	ramme	Outcon	nes (PC	Ds)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
CO1														
CO2														
CO3														
CO4														
CO5														

DIRECT	INDIRECT
1. Continuous Assessment Test I, II	1. Course-end survey
2. Assignments, Journal paper review, Group	
Presentation, Prototype or Product Demonstration	
Open book test, Quiz etc. (as applicable)	
3. End Semester Examination	
4. Classroom teaching.	
5. Magic Demonstrations.	
6. Peer learning.	
FORCE AND MECHANICS	12 Hours
Engineering Mechanics, units and dimensions, mass, weight,	, pressure, velocity, acceleration, electrical analogy, force
and reaction, resultant, resolution of forces.	

THE MAGIC BALL AND THE NECESSARY EVIL	8 Hours
Friction, laws of friction, calculation of frictional forces, losses due to friction, Electrical analog	y.
WILL THE DUSTER MOVE ALONG WITH PAPER?	10 Hours
Mass, inertia, applications of inertia, inertial effect on drivers. Moment of inertia, Calculation of	f moment of inertia
and inertial effects on drivers.	-
WORK ENERGY AND POWER	4 Hours
Moment, torque, work, energy, power, electrical analogy.	
INTRODUCTION TO HEAT TRANSFER AND THERMOELECTRIC POWER	11 Hours
GENERATION	
Electrical heat generation, Modes of heat transfer, thermoelectric power generation.	
Theory: 45 Hours To	otal: 45 Hours
TEXTBOOKS	
 Ferdinand P. Beer& E. Russell Johnston., "Vector Mechanics for Engineers, Statics a McGarw Hill 2017. 	and Dynamics",
 Frank P. Incropera, David P. Dewitt, Theodore L. Bergman, Adrienne S. Lavine, "Princip Mass transfer", Wiley 2015. 	ples of Heat and
REFERENCE BOOKS	
1. David Halliday, Jearl Walker, and Robert Resnick, "Fundamentals of Physics",4th	n edition, Wiley.2015

-	b
Sau	1
Signature of BOS chair	man, MCE